Skip to main content
Log in

Doping a Single Palladium Atom into Gold Superatoms Stabilized by PVP: Emergence of Hydrogenation Catalysis

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

It is known that small gold clusters (average diameter: ~ 1.2 nm) stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP) exhibit size-specific catalysis in aerobic oxidation reactions. A recent matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) study of Au:PVP revealed that Au clusters with the magic sizes of 34 and 43 were preferentially produced. Here, we reported how the doping of palladium (Pd) into Au:PVP affected the catalytic performance. MALDI-MS analysis of Pd-doped Au:PVP showed that a single Pd atom was selectively doped by co-reduction of Au and Pd precursor ions and that PdAu33 and PdAu43 were produced as the dominant species. Extended X-ray absorption fine structure (EXAFS) analysis indicated that a Pd atom was located at the exposed surface of the Au:PVP clusters. It was found that single Pd atom doping enhanced the catalytic activity for aerobic oxidation of benzyl alcohol and provided hydrogenation catalysis in a chemoselective manner to the C=C bonds over the C=O bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405–408

    Article  Google Scholar 

  2. Takei T, Akita T, Nakamura I, Fujitani T, Okumura M, Okazaki K, Huang J, Ishida T, Haruta M (2012) Adv Catal 55:1–126

    CAS  Google Scholar 

  3. Green IX, Tang W, Neurock M, Yates JT Jr (2011) Science 333:736–739

    Article  CAS  Google Scholar 

  4. Fujitani T, Nakamura I (2011) Angew Chem Int Ed 50:10144–10147

    Article  CAS  Google Scholar 

  5. Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) J Am Chem Soc 127:9374–9375

    Article  CAS  Google Scholar 

  6. Tsunoyama H, Sakurai H, Tsukuda T (2006) Chem Phys Lett 429:528–532

    Article  CAS  Google Scholar 

  7. Tsukuda T, Tsunoyama H, Sakurai H (2011) Chem Asian J 6:736–748

    Article  CAS  Google Scholar 

  8. Tsunoyama H, Ichikuni N, Sakurai H, Tsukuda T (2009) J Am Chem Soc 131:7086–7093

    Article  CAS  Google Scholar 

  9. Okumura M, Kitagawa Y, Kawakami T, Haruta M (2008) Chem Phys Lett 459:133–136

    Article  CAS  Google Scholar 

  10. Wallace WT, Whetten RL (2002) J Am Chem Soc 124:7499–7505

    Article  CAS  Google Scholar 

  11. Pal R, Wang LM, Pei Y, Wang LS, Zeng XC (2012) J Am Chem Soc 134:9438–9445

    Article  CAS  Google Scholar 

  12. Tsunoyama H, Ichikuni N, Tsukuda T (2008) Langmuir 24:11327–11330

    Article  CAS  Google Scholar 

  13. Tsunoyama H, Tsukuda T (2009) J Am Chem Soc 131:18216–18217

    Article  CAS  Google Scholar 

  14. Knight WD, Clemenger K, de Heer WA, Saunders WA, Chou MY, Cohen ML (1984) Phys Rev Lett 52:2141–2143

    Article  CAS  Google Scholar 

  15. Taylor KJ, Pettiette-Hall CL, Cheshnovsky O, Smalley RE (1992) J Chem Phys 96:3319–3329

    Article  CAS  Google Scholar 

  16. de Heer WA (1993) Rev Mod Phys 65:611–676

    Article  Google Scholar 

  17. Ishida R, Arii S, Kurashige W, Yamazoe S, Koyasu K, Negishi Y, Tsukuda T (2016) Chin J Catal 37:1656–1661

    Article  CAS  Google Scholar 

  18. Lechtken A, Schooss D, Stairs JR, Blom MN, Furche F, Morgner N, Kostko O, von Issendorff B, Kappes MM (2007) Angew Chem Int Ed 46:2944–2948

    Article  CAS  Google Scholar 

  19. Gu X, Bulusu S, Li X, Zeng XC, Li J, Gong XG, Wang LS (2007) J Phys Chem C 111:8228–8232

    Article  CAS  Google Scholar 

  20. Pande S, Huang W, Shao N, Wang LM, Khetrapal N, Mei WN, Jian T, Wang LS, Zeng XC (2016) ACS Nano 10:10013–10022

    Article  CAS  Google Scholar 

  21. Chaki NK, Tsunoyama H, Negishi Y, Sakurai H, Tsukuda T (2007) J Phys Chem C 111:4885–4888

    Article  CAS  Google Scholar 

  22. Häkkinen H, Abbet S, Sanchez A, Heiz U, Landman U (2003) Angew Chem Int Ed 42:1297–1300

    Article  Google Scholar 

  23. Xie S, Tsunoyama H, Kurashige W, Negishi Y, Tsukuda T (2012) ACS Catal 2:1519–1523

    Article  CAS  Google Scholar 

  24. Yamazoe S, Yoskamtorn T, Takano S, Yadnum S, Limtrakul J, Tsukuda T (2016) Chem Rec 16:2338–2348

    Article  CAS  Google Scholar 

  25. Bruma A, Negreiros FR, Tsukuda T, Johnson RL, Fortunelli A, Li ZY (2013) Nanoscale 5:9620–9625

    Article  CAS  Google Scholar 

  26. Yamazoe S, Koyasu K, Tsukuda T (2014) Acc Chem Res 47:816–824

    Article  CAS  Google Scholar 

  27. Yudha SS, Dhital RN, Sakurai H (2011) Tetrahedron Lett 52:2633–2637

    Article  Google Scholar 

  28. Nishimura S, Yakita Y, Katayama M, Higashimine K, Ebitani K (2013) Catal Sci Technol 3:351–359

    Article  CAS  Google Scholar 

  29. Hayashi N, Sakai Y, Tsunoyama H, Nakajima A (2014) Langmuir 30:10539–10547

    Article  CAS  Google Scholar 

  30. Negishi Y, Kurashige W, Niihori Y, Iwasa T, Nobusada K (2010) Phys Chem Chem Phys 12:6219 – 6225

    Article  CAS  Google Scholar 

  31. Negishi Y, Kurashige W, Kobayashi Y, Yamazoe S, Kojima N, Seto M, Tsukuda T (2013) J Phys Chem Lett 4:3579–3583

    Article  CAS  Google Scholar 

  32. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Phys Rev B 58:7565–7576

    Article  CAS  Google Scholar 

  33. Ito LN, Johnson BJ, Mueting AM, Pignolet LH (1989) Inorg Chem 26:2026–2028

    Article  Google Scholar 

  34. Jiang DE, Dai S (2009) Inorg Chem 48:2720–2722

    Article  CAS  Google Scholar 

  35. Kacprzak KA, Lehtovaara L, Akola J, Lopez-Acevedo O, Häkkinen H (2009) Phys Chem Chem Phys 11:7123–7129

    Article  CAS  Google Scholar 

  36. Walter M, Moseler M (2009) J Phys Chem C 113:15834–15837

    Article  CAS  Google Scholar 

  37. Christensen SL, MacDonald MA, Chatt A, Zhang P (2012) J Phys Chem C 116:26932–26937

    Article  CAS  Google Scholar 

  38. Tofanelli MA, Ni TW, Phillips BD, Ackerson CJ (2016) Inorg Chem 55:999–1001

    Article  CAS  Google Scholar 

  39. Miura H, Endo K, Ogawa R, Shishido T (2017) ACS Catal 7:1543–1553

    Article  CAS  Google Scholar 

  40. Zhang H, Watanabe T, Okumura M, Haruta M, Toshima N (2012) Nat Mater 11:49–52

    Article  Google Scholar 

  41. McEwan L, Julius M, Roberts S, Fletcher JCQ (2010) Gold Bull 43:298–306

    Article  CAS  Google Scholar 

  42. Lucci FR, Darby MT, Mattera MFG, Ivimey CJ, Therrien AJ, Michaelides A, Stamatakis M, Sykes CH (2016) J Phys Chem Lett 7:480–485

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Elements Strategy Initiative for Catalysts and Batteries (ESICB) and by Grants-in-Aid for Scientific Research (Nos. 17H01182 and 26248003) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and CREST (JPMJCR14L4), Japan Science and Technology Agency. The synchrotron radiation experiments were performed with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) as 2017A0910 and 2017A1492.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Tsukuda.

Additional information

The original version of this article was revised.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 287 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, S., Ishida, R., Hasegawa, S. et al. Doping a Single Palladium Atom into Gold Superatoms Stabilized by PVP: Emergence of Hydrogenation Catalysis. Top Catal 61, 136–141 (2018). https://doi.org/10.1007/s11244-017-0876-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0876-z

Keywords

Navigation