Topics in Catalysis

, Volume 61, Issue 1–2, pp 71–80 | Cite as

Photoelectron Velocity Map Imaging Spectroscopy of Heteronuclear Metal–Nickel Carbonyls MNi(CO) n (M = Sc, Y; n = 2–6)

  • Hua Xie
  • Jinghan Zou
  • Qinqin Yuan
  • Jumei Zhang
  • Hongjun Fan
  • Ling Jiang
Original Paper


The chemical bonding and electronic structure of heteronuclear metal–nickel carbonyls MNi(CO) n (M = Sc, Y; n = 2–6) have been investigated by mass-selected photoelectron velocity map imaging spectroscopy and quantum chemical calculations. Two CO bonding modes (side-on-bonded and terminal carbonyls) are involved in the n = 2 cluster. The building block composed of three kinds of different CO modes (side-on-bonded, bridging, and terminal carbonyls) is favored at n = 3, the structure of which persists up to n = 6. The additional CO ligands are preferentially coordinated in the terminal mode to the Sc atom and then to the Ni atom in the larger clusters. The present findings would promote the understanding of CO molecule activation and chemisorbed CO molecules on metal surfaces.


Photoelectron spectroscopy CO activation Heteronuclear metal carbonyl Quantum chemical calculation 



This work was supported by the National Natural Science Foundation of China (Grants 21327901, 21503222, and 21673231), the Key Research Program (Grant KGZD-EW-T05), and the Strategic Priority Research Program (Grant XDB17010000) of the Chinese Academy of Science. L. J. acknowledges the Hundred Talents Program of Chinese Academy of Sciences.

Supplementary material

11244_2017_875_MOESM1_ESM.doc (250 kb)
Supplementary material 1 (DOC 250 KB)


  1. 1.
    Heck RF (1974) Organotransition metal chemistry. Academic Press, New YorkGoogle Scholar
  2. 2.
    Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry principles of structure and reactivity harper collins. New YorkGoogle Scholar
  3. 3.
    Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry 6th edn. Wiley, New YorkGoogle Scholar
  4. 4.
    Sunderlin LS, Wang D, Squires RR (1992) Metal (iron and nickel) carbonyl bond strengths in Fe(CO)n and Ni(CO)n. J Am Chem Soc 114:2788–2796CrossRefGoogle Scholar
  5. 5.
    Meyer F, Chen YM, Armentrout PB (1995) Sequential bond energies of Cu(CO)x + and Ag(CO)x + (x = 1–4). J Am Chem Soc 117:4071–4081CrossRefGoogle Scholar
  6. 6.
    Spasov VA, Lee TH, Ervin KM (2000) Threshold collision-induced dissociation of anionic copper clusters and copper cluster monocarbonyls. J Chem Phys 112:1713–1720CrossRefGoogle Scholar
  7. 7.
    Zhou MF, Andrews L (1999) Infrared spectra and density functional calculations of Cu(CO)1–4 +,Cu(CO)1–3, and Cu(CO)1–3 in solid neon. J Chem Phys 111:4548–4557CrossRefGoogle Scholar
  8. 8.
    Liang B, Zhou MF, Andrews L (2000) Reactions of laser-ablated Ni, Pd, and Pt atoms with carbon monoxide: matrix infrared spectra and density functional calculations on M(CO)n (n = 1–4), M(CO)n (n = 1–3), and M(CO)n + (n = 1–2), (M = Ni, Pd, Pt). J Phys Chem A 104:3905–3914CrossRefGoogle Scholar
  9. 9.
    Jiang L, Xu Q (2005) Reactions of gold atoms and small clusters with CO: infrared spectroscopic and theoretical characterization of AunCO (n = 1–5) and Aun(CO)2 (n = 1, 2) in solid argon. J Phys Chem A 109:1026–1032CrossRefGoogle Scholar
  10. 10.
    Xu Q, Jiang L (2006) Oxidation of carbon monoxide on group 11 metal atoms: matrix-isolation infrared spectroscopic and density functional theory study. J Phys Chem A 110:2655–2662CrossRefGoogle Scholar
  11. 11.
    Velasquez J, Duncan MA (2008) IR photodissociation spectroscopy of gas phase Pt+(CO)n (n = 4–6). Chem Phys Lett 461:28–32CrossRefGoogle Scholar
  12. 12.
    Velasquez J, Njegic B, Gordon MS, Duncan MA (2008) IR photodissociation spectroscopy and theory of Au+(CO)n complexes: nonclassical carbonyls in the gas phase. J Phys Chem A 112:1907–1913CrossRefGoogle Scholar
  13. 13.
    Ricks AM, Reed ZD, Duncan MA (2009) Seven-coordinate homoleptic metal carbonyls in the gas phase. J Am Chem Soc 131:9176–9177CrossRefGoogle Scholar
  14. 14.
    Chi CX, Cui JM, Li ZH, Xing XP, Wang GJ, Zhou MF (2012) Infrared photodissociation spectra of mass selected homoleptic dinuclear iron carbonyl cluster anions in the gas phase. Chem Sci 3:1698–1706CrossRefGoogle Scholar
  15. 15.
    Cui JM, Xing XP, Chi CX, Wang GJ, Liu ZP, Zhou MF (2012) Infrared photodissociation spectra of mass-selected homoleptic dinuclear palladium carbonyl cluster cations in the gas phase. Chin J Chem 30:2131–2137CrossRefGoogle Scholar
  16. 16.
    Zhou X, Cui J, Li ZH, Wang GJ, Zhou MF (2012) Infrared photodissociation spectroscopic and theoretical study of homoleptic dinuclear chromium carbonyl cluster cations with a linear bridging carbonyl group. J Phys Chem A 116:12349–12356CrossRefGoogle Scholar
  17. 17.
    Okabayashi T, Yamamoto T, Okabayashi EY, Tanimoto M (2011) Low-energy vibrations of the group 10 metal monocarbonyl MCO (M = Ni, Pd, and Pt): rotational spectroscopy and force field analysis. J Phys Chem A 115:1869–1877CrossRefGoogle Scholar
  18. 18.
    Zhai HJ, Kiran B, Dai B, Li J, Wang LS Unique CO chemisorption properties of gold hexamer: Au6(CO)n (n = 0–3). J Am Chem Soc 127:12098–12106Google Scholar
  19. 19.
    Stanzel J, Aziz EF, Neeb M (2007) Photoelectron spectroscopy on small anionic coppe – carbonyl clusters. Collect Czech Chem Commun 72:1–14CrossRefGoogle Scholar
  20. 20.
    Zhai HJ, Pan LL, Dai B, Kiran B, Li J, Wang LS (2008) Chemisorption-induced structural changes and transition from chemisorption to physisorption in Au6(CO)n (n = 4–9). J Phys Chem C 112:11920–11928CrossRefGoogle Scholar
  21. 21.
    Pal R, Huang W, Wang YL, Hu HS, Bulusu S, Xiong XG, Li J, Wang LS, Zeng XC (2011) Chemisorption-induced 2D–3D–2D structural transitions in gold heptamer: (CO)nAu7 (n = 1–4). J Phys Chem Lett 2:2288–2293CrossRefGoogle Scholar
  22. 22.
    Ignatyev IS, Schaefer HF, King RB, Brown ST (2000) Binuclear homoleptic nickel carbonyls: incorporation of Ni–Ni single, double, and triple bonds, Ni2(CO)x (x = 5, 6, 7). J Am Chem Soc 122:1989–1994CrossRefGoogle Scholar
  23. 23.
    Xie Y, Schaefer HF, King RB (2000) Binuclear homoleptic iron carbonyls: incorporation of formal iron–iron single, double, triple, and quadruple bonds, Fe2(CO)x (x = 9, 8, 7, 6). J Am Chem Soc 122:8746–8761CrossRefGoogle Scholar
  24. 24.
    Li Q, Liu Y, Xie Y, King RB, Schaefer HF (2001) Binuclear homoleptic copper carbonyls Cu2(CO)x (x = 1–6): remarkable structures contrasting metal–metal multiple bonding with low-dimensional copper bonding manifolds. Inorg Chem 40:5842–5850CrossRefGoogle Scholar
  25. 25.
    Zhou MF, Andrews L, Bauschlicher CW (2001) Spectroscopic and theoretical investigations of vibrational frequencies in binary unsaturated transition-metal carbonyl cations, neutrals, and anions. Chem Rev 101:1931–1962CrossRefGoogle Scholar
  26. 26.
    Huber H, Kundig EP, Moskovits M, Ozin GA (1975) Binary copper carbonyls-synthesis and characterization of Cu(CO)3, Cu(CO)2, CuCO, and Cu2(CO)6. J Am Chem Soc 97:2097–2106CrossRefGoogle Scholar
  27. 27.
    Huber H, Kundig EP, Ozin GA, Poe AJ (1975) Reactions of monatomic and diatomic manganese with carbon-monoxide-matrix infared spectroscopic evidence for pentacarbonylmanganese MN(CO)5 and binuclear carbonyls MN2(CO)n (where n = 1 or 2). J Am Chem Soc 97:308–314CrossRefGoogle Scholar
  28. 28.
    Zhou MF, Chertihin GV, Andrews L (1998) Reactions of laser-ablated iron atoms with carbon monoxide: infrared spectra and density functional calculations of FexCO, Fe(CO)x, and Fe(CO)x (x = 1, 2, 3) in solid argon. J Chem Phys 109:10893–10904CrossRefGoogle Scholar
  29. 29.
    Tremblay B, Manceron L, Gutsev GL, Andrews L, Partridge H (2002) Experimental and theoretical infrared spectra of Co2CO. J Chem Phys 117:8479–8485CrossRefGoogle Scholar
  30. 30.
    Jiang L, Xu Q (2006) Infrared spectroscopic and density functional theory studies on the CO dissociation by scandium and yttrium dimers. J Phys Chem A 110:5636–5641CrossRefGoogle Scholar
  31. 31.
    Jiang L, Xu Q (2008) Theoretical study of the interaction of carbon monoxide with 3d metal dimers. J Chem Phys 128:124317CrossRefGoogle Scholar
  32. 32.
    Cui JM, Zhou XJ, Wang GJ, Chi CX, Li ZH, Zhou MF (2014) Infrared photodissociation spectroscopy of mass-selected homoleptic cobalt carbonyl cluster cations in the gas phase. J Phys Chem A 118:2719–2727CrossRefGoogle Scholar
  33. 33.
    Cui JM, Zhou XJ, Wang GJ, Chi CX, Liu ZH, Zhou MF (2013) Infrared photodissociation spectroscopy of mass selected homoleptic copper carbonyl cluster cations in the gas phase. J Phys Chem A 117:7810–7817CrossRefGoogle Scholar
  34. 34.
    Wang YL, Zhai HJ, Xu L, Li J, Wang LS (2010) Vibrationally resolved photoelectron spectroscopy of di-gold carbonyl clusters Au2(CO)n (n = 1–3): experiment and theory. J Phys Chem A 114:1247–1254CrossRefGoogle Scholar
  35. 35.
    Zou JH, Xie H, Dai DX, Tang ZC, Jiang L (2016) Sequential bonding of CO molecules to a titanium dimer: a photoelectron velocity-map imaging spectroscopic and theoretical study of Ti2(CO)n (n = 1–9). J Chem Phys 145:184302CrossRefGoogle Scholar
  36. 36.
    Qu H, Kong FC, Wang GJ, Zhou MF (2016) Infrared photodissociation spectroscopic and theoretical study of heteronuclear transition metal carbonyl cluster cations in the gas phase. J Phys Chem A 120:7287–7293CrossRefGoogle Scholar
  37. 37.
    Qu H, Kong F, Wang GJ, Zhou MF (2017) Infrared photodissociation spectroscopy of heterodinuclear iron–zinc and cobalt–zinc carbonyl cation complexes. J Phys Chem A 121:1627–1632CrossRefGoogle Scholar
  38. 38.
    Liu ZL, Xie H, Qin ZB, Fan HJ, Tang ZC (2014) Structural evolution of homoleptic heterodinuclear copper-nickel carbonyl anions revealed using photoelectron velocity-map Imaging. Inorg Chem 53:10909–10916CrossRefGoogle Scholar
  39. 39.
    Xie H, Zou JH, Yuan QQ, Fan HJ, Tang ZC, Jiang L (2016) Photoelectron velocity-map imaging and theoretical studies of heteronuclear metal carbonyls MNi(CO)3 (M = Mg, Ca, Al). J Chem Phys 144:124303CrossRefGoogle Scholar
  40. 40.
    Zhang N, Luo M, Chi CX, Wang GJ, Cui JM, Zhou MF (2015) Infrared photodissociation spectroscopy of mass-selected heteronuclear iron-copper carbonyl cluster anions in the gas phase. J Phys Chem A 119:4142–4150CrossRefGoogle Scholar
  41. 41.
    Zou JH, Xie H, Yuan QQ, Zhang JM, Dai DX, Fan HJ, Tang ZC, Jiang L (2017) Probing the CO bonding to heteronuclear group 4 metal-nickel clusters by photoelectron spectroscopy. Phys Chem Chem Phys 19:9790–9797CrossRefGoogle Scholar
  42. 42.
    El-Bahy ZM (2013) Preparation and characterization of Pt-promoted NiY and CoY catalysts employed for 4-nitrophenol reduction. Appl Catal A-Gen 468:175–183CrossRefGoogle Scholar
  43. 43.
    Yudasaka M, Sensui N, Takizawa M, Bandow S, Ichihashi T, Iijima S (1999) Formation of single-wall carbon nanotubes catalyzed by Ni separating from Y in laser ablation or in arc discharge using a C target containing a NiY catalyst. Chem Phys Lett 312:155–160CrossRefGoogle Scholar
  44. 44.
    Podrebarac GG, Ng FTT, Rempel GL (1996) The effect of butadiene and reaction conditions on the dimerization of 1-butene over NiY zaolite. Appl Catal A-Gen 147:159–173CrossRefGoogle Scholar
  45. 45.
    Zhou MF, Andrews L, Bauschlicher CW Jr (2001) Spectroscopic and theoretical investigations of vibrational frequencies in bibary unsaturated transition-metal carbonyl cations, neutrals, and anions. Chem Rev 101:1931–1962CrossRefGoogle Scholar
  46. 46.
    Qin ZB, Wu X, Tang ZC (2013) A novel dual-channel time-of-flight mass spectrometer for photoelectron imaging spectroscopy. Rev Sci Instrum 84:066108CrossRefGoogle Scholar
  47. 47.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Gaussian, Inc.: Wallingford, CTGoogle Scholar
  48. 48.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  49. 49.
    Brathwaite AD, Maner JA, Duncan MA (2014) Testing the limits of the 18-electron rule: the gas-phase carbonyls of Sc+ and Y+. Inorg Chem 53:1166–1169CrossRefGoogle Scholar
  50. 50.
    Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  51. 51.
    Dolg M, Stoll H, Preuss H (1989) Energy adjusted abinitio pseudopotentials for the rare earth elements. J Chem Phys 90:1730–1734CrossRefGoogle Scholar
  52. 52.
    Liu ZL, Zou JH, Qin ZB, Xie H, Fan HJ, Tang ZC (2016) Photoelectron velocity map imaging spectroscopy of lead tetracarbonyl–iron anion PbFe(CO)4 . J Phys Chem A 120:3533–3538CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations