Topics in Catalysis

, Volume 61, Issue 1–2, pp 119–125 | Cite as

Characterization of Cerium and Oxygen Atoms in Free Clusters of Cerium Oxide by X-ray Absorption Spectroscopy

  • Tetsuichiro Hayakawa
  • Masashi Arakawa
  • Shun Sarugaku
  • Kota Ando
  • Kenichirou Tobita
  • Yuya Kiyomura
  • Tomoki Kawano
  • Akira Terasaki
Original Paper
  • 216 Downloads

Abstract

X-ray absorption spectroscopy of size-selected cerium oxide cluster ions, Ce3O4–7 +, has been carried out by fragment-ion-yield measurement. X-ray absorption spectra measured in the Ce M4-edge and the O K-edge regions provided novel experimental data for chemical analysis of the constituent atoms and for discussion of geometric structures. The spectra near the Ce M4-edge exhibited a clear main peak and subtle substructures. Composition dependence of the spectra indicated that the oxidation state of Ce atoms evolves from + 3 to + 4 as an O atom is introduced one by one. On the other hand, the O K-edge spectra consisted of a main peak at ca. 532 eV and two additional peaks in the pre-edge region, where the intensities of the pre-edge peaks were significantly dependent on Ce:O composition. These pre-edge peaks suggested that the geometric structures of Ce3O5–7 + retain the “framework” of Ce3O4 + with “peripheral” O atoms bound on-top to the Ce atoms; coexistence of a structural isomer was suggested for Ce3O6 +, indicating presence of a molecular oxygen with Ce3O4 +−O2 geometry.

Keywords

Cerium oxide clusters X-ray absorption spectroscopy Chemical analysis Oxidation states Composition dependence 

Notes

Acknowledgements

We thank Professors Hiroshi Kumigashira, Koji Horiba, and Makoto Minohara for their technical support in the beamline BL-2B, KEK-PF, and Professor Kenta Amemiya in the beamline BL-7A. We are grateful to Professor Masahiko Ichihashi for informing us about his computational results prior to publication. We also thank Dr. Kazuhiro Egashira for his help in preparatory experiments. This work has been supported by the Special Cluster Research Project of Genesis Research Institute, Inc., and was performed under the approval of the Photon Factory Program Advisory Committee (Proposal No. 2014G091 and 2016G183).

Supplementary material

11244_2017_869_MOESM1_ESM.docx (169 kb)
Supplementary material 1 (DOCX 168 KB)

References

  1. 1.
    Trovarelli A, Fornasiero P (2013) Catalysis by Ceria and related materials. 2nd edn. Catalytic science series, vol 12. Imperial College Press, LondonGoogle Scholar
  2. 2.
    Skorodumova NV, Simak SI, Lundqvist BI, Abrikosov IA, Johansson B (2002) Quantum origin of the oxygen storage capability of ceria. Phys Rev Lett 89:166601CrossRefGoogle Scholar
  3. 3.
    Liu L, Cao Y, Sun W, Yao Z, Liu B, Gao F, Dong L (2011) Morphology and nanosize effects of ceria from different precursors on the activity for NO reduction. Catal Today 175:48–54CrossRefGoogle Scholar
  4. 4.
    Nolan M, Parker SC, Watson GW (2006) CeO2 catalyzed conversion of CO, NO2 and NO from first principles energetics. Phys Chem Chem Phys 8:216–218CrossRefGoogle Scholar
  5. 5.
    Wu X, Zhao Y, Xue W, Wang Z, He S, Ding X (2010) Active sites of stoichiometric cerium oxide cations (CemO2 m +) probed by reactions with carbon monoxide and small hydrocarbon molecules. Phys Chem Chem Phys 12:3984–3997CrossRefGoogle Scholar
  6. 6.
    Wu X, Ding X, Bai S, Xu B, He S, Shi Q (2011) Experimental and theoretical study of the reactions between cerium oxide cluster anions and carbon monoxide: size-dependent reactivity of CenO2n+1 (n=1 − 21). J Phys Chem C 115:13329–13337CrossRefGoogle Scholar
  7. 7.
    Hirabayashi S, Ichihashi M (2013) Oxidation of composition-selected cerium oxide cluster cations by O2. Chem Phys Lett 564:16–20CrossRefGoogle Scholar
  8. 8.
    Hirabayashi S, Ichihashi M (2013) Oxidation of CO and NO on composition-selected cerium oxide cluster cations. J Phys Chem A 117:9005–9010CrossRefGoogle Scholar
  9. 9.
    Nagata T, Miyajima K, Mafune F (2015) Stable stoichiometry of gas-phase cerium oxide cluster ions and their reactions with CO. J Phys Chem A 119:1813–1819CrossRefGoogle Scholar
  10. 10.
    Nagata T, Miyajima K, Hardy RA, Metha GF, Mafune F (2015) Reactivity of oxygen deficient cerium oxide clusters with small gaseous molecules. J Phys Chem A 119:5545–5552CrossRefGoogle Scholar
  11. 11.
    Nagata T, Miyajima K, Mafune F (2015) Oxidation of nitric oxide on gas-phase cerium oxide clusters via reactant adsorption and product desorption processes. J Phys Chem A 119:10255–10263CrossRefGoogle Scholar
  12. 12.
    Burow AM, Wende T, Sierka M, Włodarczyk R, Sauer J, Claes P, Jiang L, Meijer G, Lievens P, Asmis KR (2011) Structures and vibrational spectroscopy of partially reduced cerium oxide clusters. Phys Chem Chem Phys 13:19393–19400CrossRefGoogle Scholar
  13. 13.
    Akin ST, Ard SG, Dye BE, Schaefer HF, Duncan MA (2016) Photodissociation of cerium oxide nanocluster cations. J Phys Chem A 120:2313–2319CrossRefGoogle Scholar
  14. 14.
    Niewa R, Hu Z, Grazioli C, Rossler U, Golden MS, Knupfer M, Fink J, Giefers H, Wortmann G, de Groot FMF, DiSalvo FJ (2002) XAS spectra of Ce2[MnN3] at the Ce-M4,5, Ce-L3, Mn-L2,3 and N-K thresholds. J Alloys Comp 346:129–133CrossRefGoogle Scholar
  15. 15.
    Chen S, Lu Y, Huang T, Yan D, Dong C (2010) Oxygen vacancy dependent magnetism of CeO2 nanoparticles prepared by thermal decomposition method. J Phys Chem 114:19576–19581Google Scholar
  16. 16.
    Garvie LAJ, Buseck PR (1999) Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. J Phys Chem Solids 60:1943–1947CrossRefGoogle Scholar
  17. 17.
    Wu L, Wiesmann J, Moodenbaugh AR, Klie RF, Zhu Y, Welch DO, Suenaga M (2004) Oxidation state and lattice expansion of CeO2–x nanoparticles as a function of particle size. Phys Rev B 69:125415CrossRefGoogle Scholar
  18. 18.
    Rühl E, Jochims HW, Schmale C, Biller E, Hitchcock AP, Baumgärtel H (1991) Core-level excitation in argon clusters. Chem Phys Lett 178:558–564CrossRefGoogle Scholar
  19. 19.
    Rühl E, Heinzel C, Hitchcock AP, Baumgärtel H (1993) Ar 2p spectroscopy of free argon clusters. J Chem Phys 98:2653–2663CrossRefGoogle Scholar
  20. 20.
    Björneholm O, Federmann F, Joppien M, Fössing F, Kakar S, von Pietrowski R, Möller T (1996) Valence-and inner-shell spectroscopy on rare-gas clusters. Surf Rev Lett 3:299–306CrossRefGoogle Scholar
  21. 21.
    Hayakawa T, Nagaya K, Hamada K, Ohmasa Y, Yao M (2000) Photoelectron photoion coincidence measurements of selenium cluster beam. II. photon energy dependence. J Phys Soc Jpn 69:2850–2858CrossRefGoogle Scholar
  22. 22.
    Nagaya K, Yao M, Hayakawa T, Ohmasa Y, Kajihara Y, Ishii M, Katayama Y (2002) Size-selective extended X-ray absorption fine structure spectroscopy of free selenium clusters. Phys Rev Lett 89:243401CrossRefGoogle Scholar
  23. 23.
    Lau JT, Rittmann J, Zamudio-Bayer V, Vogel M, Hirsch K, Klar Ph, Lofink F, Möller T (2008) Size dependence of L2,3 branching ratio and 2p core-hole screening in X-ray absorption of metal clusters. Phys Rev Lett 101:153401CrossRefGoogle Scholar
  24. 24.
    Hirsch K, Lau JT, Klar P, Langenberg A, Probst J, Rittmann J, Vogel M, Zamudio-Bayer V, Möller T, von Issendorff B (2009) X-ray spectroscopy on size-selected clusters in an ion trap: from the molecular limit to bulk properties. J Phys B 42:154029CrossRefGoogle Scholar
  25. 25.
    Hayakawa T, Egashira K, Arakawa M, Ito T, Sarugaku S, Ando K, Terasaki A (2016) X-ray absorption spectroscopy of Ce2O3 + and Ce2O5 + near Ce M-edge. J Phys B 49:075101CrossRefGoogle Scholar
  26. 26.
    Terasaki A, Majima T, Kondow T (2007) Photon-trap spectroscopy of mass-selected ions in an ion trap: optical absorption and magneto-optical effects. J Chem Phys 127:231101CrossRefGoogle Scholar
  27. 27.
    Terasaki A, Majima T, Kasai C, Kondow T (2009) Photon-Trap Spectroscopy of size-selected free cluster ions: “direct” measurement of optical absorption of Ag9 +. Eur Phys J D 52:43–46CrossRefGoogle Scholar
  28. 28.
    Majima T, Santambrogio G, Bartels C, Terasaki A, Kondow T, Meinen J, Leisner T (2012) Spatial distribution of ions in a linear octopole radio-frequency ion trap in the space-charge limit. Phys Rev A 85:053414CrossRefGoogle Scholar
  29. 29.
    Construction of new wide-energy range VUV & SX beamline BL-2 “MUSASHI”. Photon Factory Activity Report 2013 #31, Newly Developed Experimental Facilities, pp 1–3Google Scholar
  30. 30.
    Kalkowski G, Kaindl G, Wortmann G, Lentz D, Krause S (1988) 4f-ligand hybridization in CeF4 and TbF4 probed by core-level spectroscopies. Phys Rev B 37:1376–1382CrossRefGoogle Scholar
  31. 31.
    Howald L, Stilp E, de Réotier PD, Yaouanc A, Raymond S, Piamonteze C, Lapertot G, Baines C, Keller H (2015) Evidence for coexistence of bulk superconductivity and itinerant antiferromagnetism in the heavy fermion system CeCo(In1−xCdx)5. Sci Rep 5:12528CrossRefGoogle Scholar
  32. 32.
    Zhou ZX, Wang LN, Li ZY, He SG, Ma TM (2016) Oxidation of SO2 to SO3 by cerium oxide cluster cations Ce2O4 + and Ce3O6 +. J Phys Chem A 120:3843–3848CrossRefGoogle Scholar
  33. 33.
    Jiang N, Spence CH (2006) Interpretation of oxygen K pre-edge peak in complex oxides. Ultramicroscopy 106:215–219CrossRefGoogle Scholar
  34. 34.
    Braaten NA, Borg A, Grepstad JK, Raaen S, Ruckman MW (1991) Oxygen K near-edge-structure for thin Ce oxide films. Solid State Commun 77:731–734CrossRefGoogle Scholar
  35. 35.
    Preda G, Migani A, Neyman KM, Bromley ST, Illas F, Pacchioni G (2011) Formation of superoxide anions on ceria nanoparticles by interaction of molecular oxygen with Ce3+ sites. J Phys Chem C 115:5817–5822CrossRefGoogle Scholar
  36. 36.
    Kullgren J, Hermansson K, Broqvist P (2013) Supercharged low-temperature oxygen storage capacity of ceria at the nanoscale. J Phys Chem Lett 4:604–608CrossRefGoogle Scholar
  37. 37.
    Huang X, Beck MJ (2015) “activated oxygen” molecules on ceria nanoparticles. Chem Mater 27:5840–5844CrossRefGoogle Scholar
  38. 38.
    Douillard L, Gautier M, Thromat N, Henriot M, Guittet MJ, Duraud JP, Tourillon G (1994) Local electronic structure of Ce-doped Y2O3: an XPS and XAS study. Phys Rev B 49:16171–16180CrossRefGoogle Scholar
  39. 39.
    Mullins DR, Overbury SH, Huntley DR (1998) Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surf Sci 409:307–319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.East Tokyo LaboratoryGenesis Research Institute, Inc.IchikawaJapan
  2. 2.Department of Chemistry, Faculty of ScienceKyushu UniversityNishi-kuJapan

Personalised recommendations