Topics in Catalysis

, Volume 61, Issue 1–2, pp 106–118 | Cite as

Infrared Spectroscopic Investigation of Structures and N2 Adsorption Induced Relaxations of Isolated Rhodium Clusters

  • Matthias P. Klein
  • Amelie A. Ehrhard
  • Jennifer Mohrbach
  • Sebastian Dillinger
  • Gereon Niedner-Schatteburg
Original Paper


This paper presents a combined IR photo dissociation (IR-PD) spectroscopic and DFT computational study of cold Rhodium cluster N2 adsorbate complexes, [Rhi(N2)m]+ = (i,m), in the ranges of i = 6, …, 15 and m = 1, …, 16. DFT modelling of naked Rhodium clusters Rhi +, i = 6, 7, 9 reveals high spin states (10tet, 13tet, and 17tet) of octahedral structures (i = 6, 7), and a tricapped trigonal prism (i = 9). The IR spectra of single N2 adsorptions red shift in line with the established charge dilution model, and they reveal evidence for structural and/or spin isomers in cases of larger clusters (i,1), i ≥ 12. The IR spectra of cluster adsorbate complexes at or close to N2 saturation indicate strong vibrational couplings and likely isomorphism. Together, the IR-PD and DFT spectra of the [Rh7(N2)12]+ = (7,12) complex reveal spin quenching into a triplet state—as compared to the 13tet state of naked Rh7 +. This study is the starting point for systematic investigations of Rhodium cluster N2 adsorbates and of Rhodium Iron hetero cluster N2 adsorbates, which are work in progress.


Rhodium clusters N2 adsorption Infrared spectroscopy Adsorbate induced surface relaxation 



This work was supported by the DFG founded transregional collaborative research center SFB/TRR 88 “” and by the state research center OPTIMAS. We thank Thomas Kolling for technical assistance and valuable discussions. We acknowledge valuable comments and suggestions by the reviewers.

Supplementary material

11244_2017_865_MOESM1_ESM.docx (2.6 mb)
Supplementary material 1 (DOCX 2648 KB)


  1. 1.
    Doyle MP (1986) Electrophilic metal carbenes as reaction intermediates in catalytic reactions. Acc Chem Res 19(11):348–356. doi: 10.1021/ar00131a004 CrossRefGoogle Scholar
  2. 2.
    Werlé C, Goddard R, Philipps P, Farès C, Fürstner A (2016) Structures of reactive donor/acceptor and donor/donor rhodium carbenes in the solid state and their implications for catalysis. J Am Chem Soc 138(11):3797–3805. doi: 10.1021/jacs.5b13321 CrossRefGoogle Scholar
  3. 3.
    van Leeuwen PWNM, Claver C (2002) Rhodium catalyzed hydroformylation, vol 22. Catalysis by metal complexes. doi: 10.1007/0-306-46947-2
  4. 4.
    Cheung H, Tanke RS, Torrence GP (2000) Acetic acid. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. doi: 10.1002/14356007.a01_045
  5. 5.
    Kaneda K, Fujita K, Takemoto T, Imanaka T (1991) Selective deoxygenation of various N-O bonds catalyzed by rhodium carbonyl clusters in the presence of H2O and CO and their heterogenization using amino-substituted polystyrenes. Bull Chem Soc Jpn 64(2):602–612. doi: 10.1246/bcsj.64.602 CrossRefGoogle Scholar
  6. 6.
    Kaneda K, Takemoto T, Imanaka T (1988) Aminated polystyrene-bound rhodium carbonyl clusters as a catalyst for deoxygenation of various N-O bonds. Chem Lett (10):1759–1762. doi: 10.1246/cl.1988.1759
  7. 7.
    Murahashi S-I, Imada Y, Hirai Y (1987) Rhodium catalyzed hydrogenation of nitrogen heteroaromatics under water gas shift conditions. Selective synthesis of 1,2,3,4-tetrahydroquinolines and -formyl-1,2,3,4-tetrahydroisoquinolines. Tetrahedron Lett 28(1):77–80. doi: 10.1016/S0040-4039(00)95653-3 CrossRefGoogle Scholar
  8. 8.
    Votsmeier M, Kreuzer T, Gieshoff J, Lepperhoff G (2009) Automobile exhaust control. Ullmann’s encyclopedia of industrial chemistry. doi: 10.1002/14356007.a03_189.pub2
  9. 9.
    Jung HJ, Becker ER (1987) Emission control for gas turbines. Platinum Metals Rev 31(4):162–170Google Scholar
  10. 10.
    Albert G, Berg C, Beyer M, Achatz U, Joos S, Niedner-Schatteburg G, Bondybey VE (1997) Methane activation by rhodium cluster argon complexes. Chem Phys Lett 268(3):235–241. doi: 10.1016/S0009-2614(97)00202-9 CrossRefGoogle Scholar
  11. 11.
    Andersson M, Holmgren L, Rosén A (1996) Rhodium-cluster reactivity: sticking probabilities of some diatomic molecules. Surf Rev Lett 03(01):683–686. doi: 10.1142/S0218625X96001236 CrossRefGoogle Scholar
  12. 12.
    Mafuné F, Tawaraya Y, Kudoh S (2016) Nitrogen molecule adsorption on cationic tantalum clusters and rhodium clusters and desorption from their nitride clusters studied by thermal desorption spectrometry. J Phys Chem A 120(24):4089–4095. doi: 10.1021/acs.jpca.6b03479 CrossRefGoogle Scholar
  13. 13.
    Zakin MR, Cox DM, Kaldor A (1988) Gas-phase rhodium cluster chemistry: Influence of adsorbate electronic structure on reaction rate. J Chem Phys 89(2):1201–1202. doi: 10.1063/1.455234 CrossRefGoogle Scholar
  14. 14.
    Mineva T, Russo N, Freund H-J (2001) CO interaction with small rhodium clusters from density functional theory: spectroscopic properties and bonding analysis. J Phys Chem A 105(47):10723–10730. doi: 10.1021/jp0116398 CrossRefGoogle Scholar
  15. 15.
    Fielicke A, von Helden G, Meijer G, Simard B, Dénommée S, Rayner DM (2003) Vibrational spectroscopy of CO in gas-phase rhodium cluster–CO complexes. J Am Chem Soc 125(37):11184–11185. doi: 10.1021/ja036897s CrossRefGoogle Scholar
  16. 16.
    Fielicke A, von Helden G, Meijer G, Pedersen DB, Simard B, Rayner DM (2004) Size and charge effects on the binding of CO to small isolated rhodium clusters. J Phys Chem B 108(38):14591–14598. doi: 10.1021/jp049214j CrossRefGoogle Scholar
  17. 17.
    Fielicke A, von Helden G, Meijer G, Pedersen DB, Simard B, Rayner DM (2006) Size and charge effects on the binding of CO to late transition metal clusters. J Chem Phys 124(19):194305. doi: 10.1063/1.2196887 CrossRefGoogle Scholar
  18. 18.
    Swart I, de Groot FM, Weckhuysen BM, Rayner DM, Meijer G, Fielicke A (2008) The effect of charge on CO binding in rhodium carbonyls: from bridging to terminal CO. J Am Chem Soc 130(7):2126–2127. doi: 10.1021/ja0772795 CrossRefGoogle Scholar
  19. 19.
    Fielicke A, Gruene P, Meijer G, Rayner DM (2009) The adsorption of CO on transition metal clusters: a case study of cluster surface chemistry. Surf Sci 603(10–12):1427–1433. doi: 10.1016/j.susc.2008.09.064 CrossRefGoogle Scholar
  20. 20.
    Shetty S, Strych S, Jansen APJ, van Santen RA (2009) Theoretical investigation of CO adsorption on Rhn (n = 3–13) clusters. Can J Chem 87(7):824–831. doi: 10.1139/V09-015 CrossRefGoogle Scholar
  21. 21.
    Tian F-Y, Shen J (2011) Density-functional study of CO adsorbed on RhN(N = 2–19) clusters. Chin Phys B 20(12):123101. doi: 10.1088/1674-1056/20/12/123101 CrossRefGoogle Scholar
  22. 22.
    Dutta A, Mondal P (2016) Structural evolution, electronic and magnetic manners of small rhodium Rhn+/–(n = 2–8) clusters: a detailed density functional theory study. RSC Adv 6(9):6946–6959. doi: 10.1039/c5ra21600a CrossRefGoogle Scholar
  23. 23.
    Dutta A, Mondal P (2017) Density functional study on structure and bonding nature of CO adsorbed Rh n +/– (n = 2–8) Clusters. J Cluster Sci. doi: 10.1007/s10876-017-1241-x Google Scholar
  24. 24.
    Ford MS, Anderson ML, Barrow MP, Woodruff DP, Drewello T, Derrick PJ, Mackenzie SR (2005) Reactions of nitric oxide on Rh6 + clusters: abundant chemistry and evidence of structural isomers. Phys Chem Chem Phys 7(5):975–980. doi: 10.1039/b415414b CrossRefGoogle Scholar
  25. 25.
    Harding D, Ford MS, Walsh TR, Mackenzie SR (2007) Dramatic size effects and evidence of structural isomers in the reactions of rhodium clusters, Rhn+/-, with nitrous oxide. Phys Chem Chem Phys 9(17):2130–2136. doi: 10.1039/B618299B CrossRefGoogle Scholar
  26. 26.
    Harding DJ, Walsh TR, Hamilton SM, Hopkins WS, Mackenzie SR, Gruene P, Haertelt M, Meijer G, Fielicke A (2010) Communications: the structure of Rh(8) (+) in the gas phase. J Chem Phys 132(1):011101. doi: 10.1063/1.3285266 CrossRefGoogle Scholar
  27. 27.
    Torres MB, Aguilera-Granja F, Balbas LC, Vega A (2011) Ab initio study of the adsorption of NO on the Rh6(+) cluster. J Phys Chem A 115(30):8350–8360. doi: 10.1021/jp202511w CrossRefGoogle Scholar
  28. 28.
    Romo-Avila SL, Guirado-Lopez RA (2012) Adsorption of nitric oxide on small Rh(n)+/- clusters: role of the local atomic environment on the dissociation of the N-O bond. J Phys Chem A 116(3):1059–1068. doi: 10.1021/jp208847r CrossRefGoogle Scholar
  29. 29.
    Tawaraya Y, Kudoh S, Miyajima K, Mafune F (2015) Thermal desorption and reaction of NO adsorbed on rhodium cluster ions studied by thermal desorption spectroscopy. J Phys Chem A 119(31):8461–8468. doi: 10.1021/acs.jpca.5b04224 CrossRefGoogle Scholar
  30. 30.
    Anderson ML, Ford MS, Derrick PJ, Drewello T, Woodruff DP, Mackenzie SR (2006) Nitric oxide decomposition on small rhodium clusters, Rhn+. J Phys Chem A 110(38):10992–11000. doi: 10.1021/jp062178z CrossRefGoogle Scholar
  31. 31.
    Hamilton SM, Hopkins WS, Harding DJ, Walsh TR, Gruene P, Haertelt M, Fielicke A, Meijer G, Mackenzie SR (2010) Infrared induced reactivity on the surface of isolated size-selected clusters: dissociation of N2O on rhodium clusters. J Am Chem Soc 132(5):1448–1449. doi: 10.1021/ja907496c CrossRefGoogle Scholar
  32. 32.
    Hamilton SM, Hopkins WS, Harding DJ, Walsh TR, Haertelt M, Kerpal C, Gruene P, Meijer G, Fielicke A, Mackenzie SR (2011) Infrared-induced reactivity of N2O on small gas-phase rhodium clusters. J Phys Chem A 115(12):2489–2497. doi: 10.1021/jp201171p CrossRefGoogle Scholar
  33. 33.
    Hermes AC, Hamilton SM, Hopkins WS, Harding DJ, Kerpal C, Meijer G, Fielicke A, Mackenzie SR (2011) Effects of coadsorbed oxygen on the infrared driven decomposition of N2O on isolated Rh5 + clusters. J Phys Chem Lett 2(24):3053–3057. doi: 10.1021/jz2012963 CrossRefGoogle Scholar
  34. 34.
    Parry IS, Kartouzian A, Hamilton SM, Balaj OP, Beyer MK, Mackenzie SR (2013) Collisional activation of N2O decomposition and CO oxidation reactions on isolated rhodium clusters. J Phys Chem A 117(36):8855–8863. doi: 10.1021/jp405267p CrossRefGoogle Scholar
  35. 35.
    Mafuné F, Tawaraya Y, Kudoh S (2016) Reactivity control of rhodium cluster ions by alloying with tantalum atoms. J Phys Chem A 120(6):861–867. doi: 10.1021/acs.jpca.5b11898 CrossRefGoogle Scholar
  36. 36.
    Francisco H, Bertin V, Soto JR, Castro M (2016) Charge and geometrical effects on the catalytic N2O reduction by Rh6– and Rh6 + clusters. J Phys Chem C 120(41):23648–23659. doi: 10.1021/acs.jpcc.6b08172 CrossRefGoogle Scholar
  37. 37.
    Xie H, Ren M, Lei Q, Fang W, Ying F (2012) Explore the catalytic reaction mechanism in the reduction of NO by CO on the Rh7 + cluster: a quantum chemical study. J Phys Chem C 116(14):7776–7781. doi: 10.1021/jp2118357 CrossRefGoogle Scholar
  38. 38.
    Su B-F, Fu H-Q, Yang H-Q, Hu C-W (2015) Catalytic reduction of NO by CO on Rh4 + clusters: a density functional theory study. Catal Sci Technol 5(6):3203–3215. doi: 10.1039/C5CY00119F CrossRefGoogle Scholar
  39. 39.
    Niedner-Schatteburg G (2017) Cooperative effects in clusters and oligonuclear complexes of transition metals in isolation. In: Dehnen S (ed) Clusters—contemporary insight in structure and bonding. Springer, Cham, pp 1–40Google Scholar
  40. 40.
    Berg C, Beyer M, Schindler T, Niedner-Schatteburg G, Bondybey VE (1996) Reactions of benzene with rhodium cluster cations: competition between chemisorption and physisorption. J Chem Phys 104(20):7940–7946. doi: 10.1063/1.471510 CrossRefGoogle Scholar
  41. 41.
    Berg C, Beyer M, Achatz U, Joos S, Niedner-Schatteburg G, Bondybey VE (1998) Effect of charge upon metal cluster chemistry: reactions of Nb n and Rh n anions and cations with benzene. J Chem Phys 108(13):5398–5403. doi: 10.1063/1.475972 CrossRefGoogle Scholar
  42. 42.
    Adlhart C, Uggerud E (2005) C-H activation of alkanes on Rh + n (n = 1–30) clusters: size effects on dehydrogenation. J Chem Phys 123(21):214709. doi: 10.1063/1.2131066 CrossRefGoogle Scholar
  43. 43.
    Balteanu I, Balaj OP, Beyer MK, Bondybey VE (2006) Size-dependent dehydrogenation of ethane by cationic rhodium clusters in the gas phase. Int J Mass Spectrom 255–256:71–75. doi: 10.1016/j.ijms.2005.08.019 CrossRefGoogle Scholar
  44. 44.
    Balteanu I, Balaj OP, Fox-Beyer BS, Rodrigues P, Barros MT, Moutinho AMC, Costa ML, Beyer MK, Bondybey VE (2004) Size- and charge-state-dependent reactivity of azidoacetonitrile with anionic and cationic rhodium clusters Rhn±. Organometallics 23(9):1978–1985. doi: 10.1021/om049946y CrossRefGoogle Scholar
  45. 45.
    Aguilera-Granja F, Rodríguez-López JL, Michaelian K, Berlanga-Ramírez EO, Vega A (2002) Structure and magnetism of small rhodium clusters. Phys Rev B 66(22):224410CrossRefGoogle Scholar
  46. 46.
    Šipr O, Ebert H, Minár J (2015) Trends in magnetism of free Rh clusters via relativistic ab-initio calculations. J Phys Condens Matter 27(5):056004. doi: 10.1088/0953-8984/27/5/056004 CrossRefGoogle Scholar
  47. 47.
    Ahmadi S, Zhang X, Gong Y, Zhu W, Sun CQ (2016) Catalytic and magnetic behaviors of excessively charged silver, copper, platinum, and rhodium atomic clusters. J Phys Chem C 120(31):17527–17536. doi: 10.1021/acs.jpcc.6b05380 CrossRefGoogle Scholar
  48. 48.
    Chien C-H, Blaisten-Barojas E, Pederson MR (1998) Magnetic and electronic properties of rhodium clusters. Phys Rev A 58(3):2196–2202CrossRefGoogle Scholar
  49. 49.
    Ma L, Moro R, Bowlan J, Kirilyuk A, de Heer WA (2014) Multiferroic rhodium clusters. Phys Rev Lett 113(15):157203. doi: 10.1103/PhysRevLett.113.157203 CrossRefGoogle Scholar
  50. 50.
    Sen P (2016) Magnetism in simple metal and 4d transition metal clusters. J Cluster Sci 27(3):795–815. doi: 10.1007/s10876-016-0986-y CrossRefGoogle Scholar
  51. 51.
    Harding DJ, Gruene P, Haertelt M, Meijer G, Fielicke A, Hamilton SM, Hopkins WS, Mackenzie SR, Neville SP, Walsh TR (2010) Probing the structures of gas-phase rhodium cluster cations by far-infrared spectroscopy. J Chem Phys 133(21):214304. doi: 10.1063/1.3509778 CrossRefGoogle Scholar
  52. 52.
    Hang TD, Hung HM, Thiem LN, Nguyen HMT (2015) Electronic structure and thermochemical properties of neutral and anionic rhodium clusters Rhn, n = 2–13. Evolution of structures and stabilities of binary clusters RhmM (M = Fe, Co, Ni; m = 1–6). Comput Theor Chem 1068:30–41. doi: 10.1016/j.comptc.2015.06.004 CrossRefGoogle Scholar
  53. 53.
    Lecours MJ, Chow WCT, Hopkins WS (2014) Density functional theory study of RhnS0,± and Rhn + 10,± (n = 1–9). J Phys Chem A 118(24):4278–4287. doi: 10.1021/jp412457m CrossRefGoogle Scholar
  54. 54.
    Citra A, Andrews L (1999) Reactions of laser ablated rhodium atoms with nitrogen atoms and molecules. Infrared spectra and density functional calculations on rhodium nitrides and dinitrogen complexes. J Phys Chem A 103(18):3410–3417. doi: 10.1021/jp9846274 CrossRefGoogle Scholar
  55. 55.
    Brathwaite AD, Abbott-Lyon HL, Duncan MA (2016) Distinctive coordination of CO vs N2 to rhodium cations: an infrared and computational study. J Phys Chem A 120(39):7659–7670. doi: 10.1021/acs.jpca.6b07749 CrossRefGoogle Scholar
  56. 56.
    Bendtsen J (1974) The rotational and rotation-vibrational Raman spectra of 14N2, 14N15N and 15N2. J Raman Spectrosc 2(2):133–145. doi: 10.1002/jrs.1250020204 CrossRefGoogle Scholar
  57. 57.
    Dillinger S, Mohrbach J, Hewer J, Gaffga M, Niedner-Schatteburg G (2015) Infrared spectroscopy of N2 adsorption on size selected cobalt cluster cations in isolation. Phys Chem Chem Phys 17(16):10358–10362. doi: 10.1039/C5CP00047E CrossRefGoogle Scholar
  58. 58.
    Maruyama S, Anderson LR, Smalley RE (1990) Direct injection supersonic cluster beam source for FT-ICR studies of clusters. Rev Sci Instrum 61(12):3686–3693. doi: 10.1063/1.1141536 CrossRefGoogle Scholar
  59. 59.
    Berg C, Schindler T, Niedner-Schatteburg G, Bondybey VE (1995) Reactions of simple hydrocarbons with Nb + n: chemisorption and physisorption on ionized niobium clusters. J Chem Phys 102(12):4870–4884CrossRefGoogle Scholar
  60. 60.
    Proch D, Trickl T (1989) A high-intensity multi-purpose piezoelectric pulsed molecular beam source. Rev Sci Instrum 60(4):713–716. doi: 10.1063/1.1141006 CrossRefGoogle Scholar
  61. 61.
    Kofel P, Allemann M, Kellerhals H, Wanczek KP (1985) External generation of ions in ICR spectrometry. Int J Mass Spectrom Ion Processes 65(1):97–103. doi: 10.1016/0168-1176(85)85056-4 CrossRefGoogle Scholar
  62. 62.
    Kofel P, Allemann M, Kellerhals H, Wanczek KP (1986) Time-of-flight ICR spectrometry. Int J Mass Spectrom Ion Processes 72(1):53–61. doi: 10.1016/0168-1176(86)85033-9 CrossRefGoogle Scholar
  63. 63.
    Caravatti P, Allemann M (1991) The ‘infinity cell’: a new trapped-ion cell with radiofrequency covered trapping electrodes for fourier transform ion cyclotron resonance mass spectrometry. Org Mass Spectrom 26(5):514–518. doi: 10.1002/oms.1210260527 CrossRefGoogle Scholar
  64. 64.
    Peredkov S, Savci A, Peters S, Neeb M, Eberhardt W, Kampschulte H, Meyer J, Tombers M, Hofferberth B, Menges F, Niedner-Schatteburg G (2011) X-ray absorption spectroscopy of mass-selected transition metal clusters using a cyclotron ion trap: an experimental setup for measuring XMCD spectra of free clusters. J Electron Spectrosc 184(3–6):113–118. doi: 10.1016/j.elspec.2010.12.031 CrossRefGoogle Scholar
  65. 65.
    Meyer J, Tombers M, van Wüllen C, Niedner-Schatteburg G, Peredkov S, Eberhardt W, Neeb M, Palutke S, Martins M, Wurth W (2015) The spin and orbital contributions to the total magnetic moments of free Fe, Co, and Ni clusters. J Chem Phys 143(10):104302. doi: 10.1063/1.4929482 CrossRefGoogle Scholar
  66. 66.
    Schindler T, Berg C, Niedner-Schatteburg G, Bondybey VE (1996) Protonated water clusters and their black body radiation induced fragmentation. Chem Phys Lett 250(3):301–308. doi: 10.1016/0009-2614(96)00002-4 CrossRefGoogle Scholar
  67. 67.
    Niedner-Schatteburg G, Bondybey VE (2000) FT-ICR studies of solvation effects in ionic water cluster reactions. Chem Rev 100(11):4059–4086. doi: 10.1021/cr990065o CrossRefGoogle Scholar
  68. 68.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc., WallingfordGoogle Scholar
  69. 69.
    Black G, Schuchardt K, Gracio D, Palmer B (2003) The extensible computational chemistry environment: a problem solving environment for high performance theoretical chemistry. In: Sloot PMA, Abramson D, Bogdanov AV, Gorbachev YE, Dongarra JJ, Zomaya AY (eds) Computational Science—ICCS 2003: International Conference, Melbourne, Australia and St. Petersburg, Russia, June 2–4, 2003 Proceedings, Part IV. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 122–131. doi: 10.1007/3-540-44864-0_13
  70. 70.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110(13):6158–6170. doi: 10.1063/1.478522 CrossRefGoogle Scholar
  71. 71.
    Mohrbach J, Dillinger S, Niedner-Schatteburg G (2017) Cryo kinetics and spectroscopy of cationic nickel clusters: rough and smooth surfaces. J Phys Chem C 121(20):10907–10918. doi: 10.1021/acs.jpcc.6b12167 CrossRefGoogle Scholar
  72. 72.
    Dillinger S, Mohrbach J, Niedner-Schatteburg G (2017) Probing cluster surface morphology by cryo spectroscopy of N2 on cationic nickel clusters. J Chem Phys (accepted)Google Scholar
  73. 73.
    Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theoret Chim Acta 77(2):123–141. doi: 10.1007/bf01114537 CrossRefGoogle Scholar
  74. 74.
    Bligaard T, Nørskov JK (2008) Chapter 4—heterogeneous catalysis. Chemical bonding at surfaces and interfaces. Elsevier, Amsterdam, pp 255–321CrossRefGoogle Scholar
  75. 75.
    Comelli G, Dhanak VR, Kiskinova M, Prince KC, Rosei R (1998) Oxygen and nitrogen interaction with rhodium single crystal surfaces. Surf Sci Rep 32(5):165–231. doi: 10.1016/s0167-5729(98)00003-x CrossRefGoogle Scholar
  76. 76.
    Beyer MK, Knickelbein MB (2007) Electric deflection studies of rhodium clusters. J Chem Phys 126(10):104301. doi: 10.1063/1.2698320 CrossRefGoogle Scholar
  77. 77.
    Mokkath JH, Pastor GM (2012) Interplay between chemical and magnetic order in FeRh clusters. J Phys Chem C 116(32):17228–17238. doi: 10.1021/jp3032176 CrossRefGoogle Scholar
  78. 78.
    Beltran MR, Zamudio FB, Chauhan V, Sen P, Wang H, Ko YJ, Bowen K (2013) Ab initio and anion photoelectron studies of Rhn (n = 1–9) clusters. Eur Phys J D 67(3):63. doi: 10.1140/epjd/e2013-30547-2 CrossRefGoogle Scholar
  79. 79.
    Cotton FA, DeBoer BG, LaPrade MD, Pipal JR, Ucko DA (1971) The crystal and molecular structures of dichromium tetraacetate dihydrate and dirhodium tetraacetate dihydrate. Acta Crystallogr B 27(8):1664–1671. doi: 10.1107/S0567740871004527 CrossRefGoogle Scholar
  80. 80.
    Lide DR (2010) CRC handbook of chemistry and physics, 90th edn. CRC Press, Boca RatonGoogle Scholar
  81. 81.
    Whetten RL, Cox DM, Trevor DJ, Kaldor A (1985) Free iron clusters react readily with oxygen and hydrogen sulfide, but are inert toward methane. J Phys Chem 89(4):566–569. doi: 10.1021/j100250a004 CrossRefGoogle Scholar
  82. 82.
    Dillinger S, Mohrbach J, Ehrhard A, Klein M, Niedner-Schatteburg G, unpublished dataGoogle Scholar
  83. 83.
    Kerpal C, Harding DJ, Lyon JT, Meijer G, Fielicke A (2013) N2 activation by neutral ruthenium clusters. J Phys Chem C 117(23):12153–12158. doi: 10.1021/jp401876b CrossRefGoogle Scholar
  84. 84.
    Blyholder G (1964) Molecular orbital view of chemisorbed carbon monoxide. J Phys Chem 68(10):2772–2777. doi: 10.1021/J100792a006 CrossRefGoogle Scholar
  85. 85.
    Dewar JS (1951) A review of the Pi-complex theory. Bull Soc Chim Fr 18(3–4):C71–C79Google Scholar
  86. 86.
    Chatt J, Duncanson LA (1953) 586. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes. J Chem Soc. doi: 10.1039/JR9530002939 Google Scholar
  87. 87.
    Rapps T, Ahlrichs R, Waldt E, Kappes MM, Schooss D (2013) On the structures of 55-atom transition-metal clusters and their relationship to the crystalline bulk. Angew Chem 52(23):6102–6105. doi: 10.1002/anie.201302165 CrossRefGoogle Scholar
  88. 88.
    Robertson BE (1977) Coordination polyhedra with nine and ten atoms. Inorg Chem 16(11):2735–2742. doi: 10.1021/ic50177a014 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Fachbereich Chemie and Forschungszentrum OPTIMAS, TU KaiserslauternKaiserslauternGermany

Personalised recommendations