Topics in Catalysis

, Volume 61, Issue 1–2, pp 92–105 | Cite as

Dissociative Water Adsorption on Gas-Phase Titanium Dioxide Cluster Anions Probed with Infrared Photodissociation Spectroscopy

  • Marissa L. Weichman
  • Sreekanta Debnath
  • John T. Kelly
  • Sandy Gewinner
  • Wieland Schöllkopf
  • Daniel M. Neumark
  • Knut R. Asmis
Original Paper


Gas-phase complexes of water on small titanium oxide clusters are model systems to examine the molecular-level mechanism of dissociative water adsorption at defect sites on bulk titania surfaces. Here, we report infrared photodissociation (IRPD) spectra for [(TiO2) n (D2O m )] clusters with n = 2–4 and m = 1–3; the clusters are tagged with weakly-bound D2 so that only single photon absorption is required for photodissociation. Vibrational features are reported in the spectral windows of 400–1200 and 2600–3000 cm− 1 , capturing both fingerprint cluster modes and O–D stretching modes. The IRPD spectra are interpreted with the aid of ωB97X-D/aug-cc-pVDZ density functional theory calculations. We conclusively assign the IRPD spectra of the n = 2, m = 1,2 and n = 3, m = 1–3 clusters to global minimum-energy structures containing dissociatively adsorbed water. We also provide insight into the more complicated spectroscopy of the n = 4 clusters, which show possible contributions from a kinetically trapped reactive intermediate in addition to the global minimum-energy isomer. From this work, we can draw conclusions about the size dependence and site-specificity of (TiO2) n cluster reactivity.


Infrared photodissociation spectroscopy Metal oxide clusters Titanium dioxide Dissociative water adsorption Water splitting catalysis Density functional theory 



This research is funded by the Air Force Office of Scientific Research under Grant No. FA9550-12-1-0160 and by the German Research Foundation (DFG) within the Collaborative Research Center 1109 “Metal Oxide/Water Systems.” Calculations were carried out in part using the UC Berkeley College of Chemistry Molecular Graphics and Computation Facility, which is funded by the National Institutes of Health under Grant No. S10OD023532. M.L.W. thanks the National Science Foundation for a graduate research fellowship.

Supplementary material

11244_2017_863_MOESM1_ESM.docx (14.8 mb)
Supplementary material 1 (DOCX 15138 KB)


  1. 1.
    Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229CrossRefGoogle Scholar
  2. 2.
    Sato S, White JM (1980) Photoassisted water-gas shift reaction over platinized TiO2 catalysts. J Am Chem Soc 102:7206–7210CrossRefGoogle Scholar
  3. 3.
    Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 66:185–297CrossRefGoogle Scholar
  4. 4.
    Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52:7372–7408CrossRefGoogle Scholar
  5. 5.
    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  6. 6.
    Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344CrossRefGoogle Scholar
  7. 7.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  8. 8.
    Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44:8269–8285CrossRefGoogle Scholar
  9. 9.
    Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986CrossRefGoogle Scholar
  10. 10.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  11. 11.
    Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energy Rev 11:401–425CrossRefGoogle Scholar
  12. 12.
    Tachikawa T, Fujitsuka M, Majima T (2007) Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J Phys Chem C 111:5259–5275CrossRefGoogle Scholar
  13. 13.
    Weichman ML, Song X, Fagiani MR, Debnath S, Gewinner S, Schöllkopf W, Neumark DM, Asmis KR (2016) Gas phase vibrational spectroscopy of cold (TiO2)n (n = 3–8) clusters. J Chem Phys 144:124308CrossRefGoogle Scholar
  14. 14.
    Sun CH, Liu LM, Selloni A, Lu GQ, Smith SC (2010) Titania-water interactions: a review of theoretical studies. J Mater Chem 20:10319–10334CrossRefGoogle Scholar
  15. 15.
    Mu R, Zhao Z-j, Dohnálek Z, Gong J (2017) Structural motifs of water on metal oxide surfaces. Chem Soc Rev 46:1785–1806CrossRefGoogle Scholar
  16. 16.
    Diebold U (2017) A controversial benchmark system for water-oxide interfaces: H2O/TiO2(110). J Chem Phys 147(4):040901CrossRefGoogle Scholar
  17. 17.
    Kurtz RL, Stockbauer R, Madey TE, Roman E, Desegovia JL (1989) Synchrotron radiation studies of H2O adsorption on TiO2(110). Surf Sci 218:178–200CrossRefGoogle Scholar
  18. 18.
    Hugenschmidt MB, Gamble L, Campbell CT (1994) The interaction of H2O with a TiO2(110) surface. Surf Sci 302:329–340CrossRefGoogle Scholar
  19. 19.
    Henderson MA (1996) An HREELS and TPD study of water on TiO2(110): the extent of molecular versus dissociative adsorption. Surf Sci 355:151–166CrossRefGoogle Scholar
  20. 20.
    Brinkley D, Dietrich M, Engel T, Farrall P, Gantner G, Schafer A, Szuchmacher A (1998) A modulated molecular beam study of the extent of H2O dissociation on TiO2(110). Surf Sci 395:292–306CrossRefGoogle Scholar
  21. 21.
    Wang L-Q, Ferris KF, Skiba PX, Shultz AN, Baer DR, Engelhard MH (1999) Interactions of liquid and vapor water with stoichiometric and defective TiO2(100) surfaces. Surf Sci 440:60–68CrossRefGoogle Scholar
  22. 22.
    Schaub R, Thostrup P, Lopez N, Lægsgaard E, Stensgaard I, Nørskov JK, Besenbacher F (2001) Oxygen vacancies as active sites for water dissociation on rutile TiO2(110). Phys Rev Lett 87:266104CrossRefGoogle Scholar
  23. 23.
    Wendt S, Schaub R, Matthiesen J, Vestergaard EK, Wahlström E, Rasmussen MD, Thostrup P, Molina LM, Lægsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: a combined high-resolution STM and DFT study. Surf Sci 598:226–245CrossRefGoogle Scholar
  24. 24.
    Bikondoa O, Pang CL, Ithnin R, Muryn CA, Onishi H, Thornton G (2006) Direct visualization of defect-mediated dissociation of water on TiO2(110). Nat Mater 5:189–192CrossRefGoogle Scholar
  25. 25.
    Zhang Z, Bondarchuk O, Kay BD, White JM, Dohnálek Z (2006) Imaging water dissociation on TiO2(110): evidence for inequivalent geminate OH groups. J Phys Chem B 110:21840–21845CrossRefGoogle Scholar
  26. 26.
    Walle LE, Borg A, Johansson EMJ, Plogmaker S, Rensmo H, Uvdal P, Sandell A (2011) Mixed dissociative and molecular water adsorption on anatase TiO2(101). J Phys Chem C 115:9545–9550CrossRefGoogle Scholar
  27. 27.
    Kristoffersen HH, Hansen JØ, Martinez U, Wei YY, Matthiesen J, Streber R, Bechstein R, Lægsgaard E, Besenbacher F, Hammer B, Wendt S (2013) Role of steps in the dissociative adsorption of water on rutile TiO2(110). Phys Rev Lett 110:146101CrossRefGoogle Scholar
  28. 28.
    Geng Z, Chen X, Yang W, Guo Q, Xu C, Dai D, Yang X (2016) Highly efficient water dissociation on anatase TiO2(101). J Phys Chem C 120:26807–26813CrossRefGoogle Scholar
  29. 29.
    Tan S, Feng H, Ji Y, Wang Y, Zhao J, Zhao A, Wang B, Luo Y, Yang J, Hou JG (2012) Observation of photocatalytic dissociation of water on terminal Ti Sites of TiO2(110)–1 × 1 surface. J Am Chem Soc 134:9978–9985CrossRefGoogle Scholar
  30. 30.
    Zheng T, Wu C, Chen M, Zhang Y, Cummings PT (2016) A DFT study of water adsorption on rutile TiO2 (110) surface: the effects of surface steps. J Chem Phys 145:044702CrossRefGoogle Scholar
  31. 31.
    Posternak M, Baldereschi A, Delley B (2009) Dissociation of water on anatase TiO2 nanoparticles: the role of undercoordinated Ti atoms at edges. J Phys Chem C 113:15862–15867CrossRefGoogle Scholar
  32. 32.
    Shi H, Liu Y-C, Zhao Z-J, Miao M, Wu T, Wang Q (2014) Reactivity of the defective rutile TiO2(110) surfaces with two bridging-oxygen vacancies: water molecule as a probe. J Phys Chem C 118:20257–20263CrossRefGoogle Scholar
  33. 33.
    Castleman AW (2011) Cluster structure and reactions: gaining insights into catalytic processes. Catal Lett 141:1243–1253CrossRefGoogle Scholar
  34. 34.
    Sauer J, Freund HJ (2015) Models in catalysis. Catal Lett 145:109–125CrossRefGoogle Scholar
  35. 35.
    Gong Y, Zhou M, Andrews L (2009) Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes. Chem Rev 109:6765–6808CrossRefGoogle Scholar
  36. 36.
    Zhai H-J, Wang L-S (2010) Probing the electronic structure of early transition metal oxide clusters: molecular models towards mechanistic insights into oxide surfaces and catalysis. Chem Phys Lett 500:185–195CrossRefGoogle Scholar
  37. 37.
    Ramabhadran RO, Mann JE, Waller SE, Rothgeb DW, Jarrold CC, Raghavachari K (2013) New insights on photocatalytic H2 liberation from water using transition-metal oxides: lessons from cluster models of molybdenum and tungsten oxides. J Am Chem Soc 135:17039–17051CrossRefGoogle Scholar
  38. 38.
    Yin S, Bernstein ER (2014) Experimental and theoretical studies of H2O oxidation by neutral Ti2O4,5 clusters under visible light irradiation. Phys Chem Chem Phys 16:13900–13908CrossRefGoogle Scholar
  39. 39.
    Lang SM, Bernhardt TM, Kiawi DM, Bakker JM, Barnett RN, Landman U (2016) Cluster size and composition dependent water deprotonation by free manganese oxide clusters. Phys Chem Chem Phys 18:15727–15737CrossRefGoogle Scholar
  40. 40.
    Fagiani MR, Song X, Debnath S, Gewinner S, Schöllkopf W, Asmis KR, Bischoff FA, Müller F, Sauer J (2017) Dissociative water adsorption by Al3O4 + in the gas phase. J Phys Chem Lett 8:1272–1277CrossRefGoogle Scholar
  41. 41.
    Cheng M-J, Chenoweth K, Oxgaard J, van Duin A, Goddard WA (2007) Single-site vanadyl activation, functionalization, and reoxidation reaction mechanism for propane oxidative dehydrogenation on the cubic V4O10 cluster. J Phys Chem C 111:5115–5127CrossRefGoogle Scholar
  42. 42.
    Wu H, Wang L-S (1997) Electronic structure of titanium oxide clusters: TiOy (y = 1–3) and (TiO2)n (n = 1–4). J Chem Phys 107:8221–8228CrossRefGoogle Scholar
  43. 43.
    Zhai H-J, Wang L-S (2007) Probing the electronic structure and band gap evolution of titanium oxide clusters (TiO2)n (n = 1–10) using photoelectron spectroscopy. J Am Chem Soc 129:3022–3026CrossRefGoogle Scholar
  44. 44.
    Gong Y, Zhang Q, Zhou M (2007) Matrix isolation infrared spectroscopic and theoretical study of group IV metal oxide clusters: M2O2 and M2O4. J Phys Chem A 111:3534–3539CrossRefGoogle Scholar
  45. 45.
    Kim JB, Weichman ML, Neumark DM (2013) High-resolution anion photoelectron spectra of TiO2 , ZrO2 , and HfO2 obtained by slow electron velocity-map imaging. Phys Chem Chem Phys 15:20973–20981CrossRefGoogle Scholar
  46. 46.
    Kim JB, Weichman ML, Neumark DM (2014) Structural isomers of Ti2O4 and Zr2O4 anions identified by slow photoelectron velocity-map imaging spectroscopy. J Am Chem Soc 136:7159–7168CrossRefGoogle Scholar
  47. 47.
    Deng H, Kerns KP, Guo B, Bell RC, Castleman AW (1998) The formation of [TiO(H2O)n]+ cluster ions. Croat Chem Acta 71:1105–1116Google Scholar
  48. 48.
    Xu H-G, Li X-N, Kong X-Y, He S-G, Zheng W-J (2013) Interaction of TiO+ with water: infrared photodissociation spectroscopy and density functional calculations. Phys Chem Chem Phys 15:17126–17133CrossRefGoogle Scholar
  49. 49.
    Li R-Z, Xu H-G, Cao G-J, Xu X-L, Zheng W-J (2013) Interaction of TiO2 with water: photoelectron spectroscopy and density functional calculations. J Chem Phys 139:184303CrossRefGoogle Scholar
  50. 50.
    Tsuchiya T, Whitten JL (2011) Theoretical study of the molecular and electronic structures of TiO4H4, Ti2O7H6, and Ti2O6H4. J Phys Chem C 115:1635–1642CrossRefGoogle Scholar
  51. 51.
    Pandey LB, Aikens CM (2012) Theoretical investigation of the electrochemical mechanism of water splitting on a titanium oxide cluster model. J Phys Chem A 116:526–535CrossRefGoogle Scholar
  52. 52.
    Çakir D, Gülseren O (2012) clusters and their interactions with water and transition metal atoms. J Phys 24:305301Google Scholar
  53. 53.
    Du H, De Sarkar A, Li H, Sun Q, Jia Y, Zhang R-Q (2013) Size dependent catalytic effect of TiO2 clusters in water dissociation. J Mol Catal A 366:163–170CrossRefGoogle Scholar
  54. 54.
    Berardo E, Hu H-S, Shevlin SA, Woodley SM, Kowalski K, Zwijnenburg MA (2014) Modeling excited states in TiO2 nanoparticles: on the accuracy of a TD-DFT based description. J Chem Theory Comput 10:1189–1199CrossRefGoogle Scholar
  55. 55.
    Rodríguez-Hernández F, Tranca DC, Szyja BM, van Santen RA, Martínez-Mesa A, Uranga-Piña L, Seifert G (2016) Water splitting on TiO2-based electrochemical cells: a small cluster study. J Phys Chem C 120:437–449CrossRefGoogle Scholar
  56. 56.
    Muuronen M, Parker SM, Berardo E, Le A, Zwijnenburg MA, Furche F (2017) Mechanism of photocatalytic water oxidation on small TiO2 nanoparticles. Chem Sci 8:2179–2183CrossRefGoogle Scholar
  57. 57.
    Valdés Á, Kroes G-J (2010) Cluster study of the photo-oxidation of water on rutile titanium dioxide (TiO2). J Phys Chem C 114:1701–1708CrossRefGoogle Scholar
  58. 58.
    Li Y-F, Liu Z-P (2011) Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings. J Am Chem Soc 133:15743–15752CrossRefGoogle Scholar
  59. 59.
    Meng Q-q, Wang J-g, Xie Q, Dong H-q, Li X-n (2011) Water splitting on TiO2 nanotube arrays. Catal Today 165:145–149CrossRefGoogle Scholar
  60. 60.
    Berardo E, Zwijnenburg MA (2015) Modeling the water splitting activity of a TiO2 rutile nanoparticle. J Phys Chem C 119:13384–13393CrossRefGoogle Scholar
  61. 61.
    Wang T-H, Fang Z, Gist NW, Li S, Dixon DA, Gole JL (2011) Computational study of the hydrolysis reactions of the ground and first excited triplet states of small TiO2 nanoclusters. J Phys Chem C 115:9344–9360CrossRefGoogle Scholar
  62. 62.
    Fang Z, Dixon DA (2013) Computational study of H2 and O2 production from water splitting by small (MO2)n clusters (M = Ti, Zr, Hf). J Phys Chem A 117:3539–3555CrossRefGoogle Scholar
  63. 63.
    Chen M, Straatsma TP, Dixon DA (2015) clusters, n = 1–4. J Phys Chem A 119:11406–11421CrossRefGoogle Scholar
  64. 64.
    Asmis KR, Brümmer M, Kaposta C, Santambrogio G, von Helden G, Meijer G, Rademann K, Wöste L (2002) Mass-selected infrared photodissociation spectroscopy of V4O10 +. Phys Chem Chem Phys 4:1101–1104CrossRefGoogle Scholar
  65. 65.
    Wolk AB, Leavitt CM, Garand E, Johnson MA (2014) Cryogenic ion chemistry and spectroscopy. Acc Chem Res 47:202–210CrossRefGoogle Scholar
  66. 66.
    Asmis KR, Sauer J (2007) Mass-selective vibrational spectroscopy of vanadium oxide cluster ions. Mass Spectrom Rev 26:542–562CrossRefGoogle Scholar
  67. 67.
    Asmis KR (2012) Structure characterization of metal oxide clusters by vibrational spectroscopy: possibilities and prospects. Phys Chem Chem Phys 14:9270–9281CrossRefGoogle Scholar
  68. 68.
    Goebbert DJ, Meijer G, Asmis KR (2009) 10 K ring electrode trap-tandem mass spectrometer for infrared spectroscopy of mass selected ions. AIP Conf Proc 1104:22–29CrossRefGoogle Scholar
  69. 69.
    Heine N, Asmis KR (2015) Cryogenic ion trap vibrational spectroscopy of hydrogen-bonded clusters relevant to atmospheric chemistry. Int Rev Phys Chem 34:1–34CrossRefGoogle Scholar
  70. 70.
    Heine N, Asmis KR (2016) Cryogenic ion trap vibrational spectroscopy of hydrogen-bonded clusters relevant to atmospheric chemistry. Int Rev Phys Chem 35:507–507CrossRefGoogle Scholar
  71. 71.
    Schöllkopf W, Gewinner S, Junkes H, Paarmann A, von Helden G, Bluem H, Todd AMM (2015) The new IR and THz FEL facility at the Fritz Haber Institute in Berlin. Proc SPIE 9512:95121LCrossRefGoogle Scholar
  72. 72.
    Geusic ME, Morse MD, O’Brien SC, Smalley RE (1985) Surface reactions of metal clusters I: the fast flow cluster reactor. Rev Sci Instrum 56:2123–2130CrossRefGoogle Scholar
  73. 73.
    Brümmer M, Kaposta C, Santambrogio G, Asmis KR (2003) Formation and photodepletion of cluster ion-messenger atom complexes in a cold ion trap: Infrared spectroscopy of VO+, VO2 +, and VO3. J Chem Phys 119:12700–12703CrossRefGoogle Scholar
  74. 74.
    Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620CrossRefGoogle Scholar
  75. 75.
    Minenkov Y, Singstad A, Occhipinti G, Jensen VR (2012) The accuracy of DFT-optimized geometries of functional transition metal compounds: a validation study of catalysts for olefin metathesis and other reactions in the homogeneous phase. Dalton Trans 41:5526–5541CrossRefGoogle Scholar
  76. 76.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford, CTGoogle Scholar
  77. 77.
    Song X, Fagiani MR, Debnath S, Gao M, Maeda S, Taketsugu T, Gewinner S, Schöllkopf W, Asmis KR, Lyalin A (2017) Excess charge driven dissociative hydrogen adsorption on Ti2O4 . Phys Chem Chem Phys 19(34):23154–23161CrossRefGoogle Scholar
  78. 78.
    Li S, Dixon DA (2008) Molecular structures and energetics of the (TiO2)n (n = 1–4) clusters and their anions. J Phys Chem A 112:6646–6666CrossRefGoogle Scholar
  79. 79.
    Yacovitch TI, Heine N, Brieger C, Wende T, Hock C, Neumark DM, Asmis KR (2013) Vibrational spectroscopy of bisulfate/sulfuric acid/water clusters: structure, stability, and infrared multiple-photon dissociation intensities. J Phys Chem A 117:7081–7090CrossRefGoogle Scholar
  80. 80.
    Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J Chem Theory Comput 6:2872–2887CrossRefGoogle Scholar
  81. 81.
    Irikura KK (2007) Experimental vibrational zero-point energies: diatomic molecules. J Phys Chem Ref Data 36:389–397CrossRefGoogle Scholar
  82. 82.
    Asmis KR, Santambrogio G, Brummer M, Sauer J (2005) Polyhedral vanadium oxide cages: infrared spectra of cluster anions and size-induced d electron localization. Angew Chem Int Ed 44:3122–3125CrossRefGoogle Scholar
  83. 83.
    Suda Y, Morimoto T (1987) Molecularly adsorbed H2O on the bare surface of TiO2 (rutile). Langmuir 3:786–788CrossRefGoogle Scholar
  84. 84.
    Szczepankiewicz SH, Colussi AJ, Hoffmann MR (2000) Infrared spectra of photoinduced species on hydroxylated titania surfaces. J Phys Chem B 104:9842–9850CrossRefGoogle Scholar
  85. 85.
    Finnie KS, Cassidy DJ, Bartlett JR, Woolfrey JL (2001) IR spectroscopy of surface water and hydroxyl species on nanocrystalline TiO2 films. Langmuir 17:816–820CrossRefGoogle Scholar
  86. 86.
    Yamakata A, Ishibashi T, Onishi H (2002) Time-resolved infrared absorption studies of surface OH groups on TiO2 particles irradiated by UV pulses. Bull Chem Soc Jpn 75:1019–1022CrossRefGoogle Scholar
  87. 87.
    Wang C-y, Groenzin H, Shultz MJ (2003) Molecular species on nanoparticulate anatase TiO2 film detected by sum frequency generation: trace hydrocarbons and hydroxyl groups. Langmuir 19:7330–7334CrossRefGoogle Scholar
  88. 88.
    Nakamura R, Nakato Y (2004) Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J Am Chem Soc 126:1290–1298CrossRefGoogle Scholar
  89. 89.
    Fagiani MR, Knorke H, Esser TK, Heine N, Wolke CT, Gewinner S, Schöllkopf W, Gaigeot M-P, Spezia R, Johnson MA, Asmis KR (2016) Gas phase vibrational spectroscopy of the protonated water pentamer: the role of isomers and nuclear quantum effects. Phys Chem Chem Phys 18:26743–26754CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Fritz-Haber-Institut der Max-Plank-GesellschaftBerlinGermany
  3. 3.Wilhelm-Ostwald-Institut für Physikalische und Theoretische ChemieUniversität LeipzigLeipzigGermany
  4. 4.Chemical Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations