Advertisement

Topics in Catalysis

, Volume 61, Issue 1–2, pp 35–41 | Cite as

Ammonia Dehydrogenation on Cobalt Cluster Cations Doped with Niobium

  • Shinichi Hirabayashi
  • Masahiko Ichihashi
Article
  • 142 Downloads

Abstract

Reactivity of bimetallic cobalt-niobium cluster cations, Co n Nb m + (n = 1–4, 6; m = 1–3), toward ammonia was investigated at near thermal energy using a guided ion beam tandem mass spectrometer. The dehydrogenation of NH3 is dominantly observed in the single-collision reactions of all the bimetallic clusters studied here. Most of the clusters containing one niobium atom, Co n Nb+, exhibit large cross sections for the NH3 dehydrogenation compared to the corresponding single-element clusters, Co n+1 + and Nb n+1 +. Density functional theory calculations reveal that both the transition states involved in the first and the second cleavages of N–H bonds of NH3 are significantly stabilized for Co4Nb+, which gives rise to the higher reactivity toward the NH3 dehydrogenation. The multiple-collision reactions of Co n Nb+ (n = 3, 4, and 6) result in the formation of Co n NbN2 +, which can be generated via complete dehydrogenation of two NH3 molecules, in addition to the formation of Co n NbN x H x +.

Keywords

Ammonia Cobalt Niobium Bimetallic clusters Dehydrogenation 

Notes

Acknowledgements

Calculations were performed using the Fujitsu PRIMERGY RX300 S7 of the Research Center for Computational Science, Okazaki Research Facilities, National Institutes of Natural Sciences. This work was supported by the Special Cluster Research Project of Genesis Research Institute, Inc.

References

  1. 1.
    Yin SF, Xu BQ, Zhou XP, Au CT (2004) A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl Catal A Gen 277:1–9CrossRefGoogle Scholar
  2. 2.
    Hansgen DA, Vlachos DG, Chen JG (2010) Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nat Chem 2:484–489CrossRefGoogle Scholar
  3. 3.
    Schüth F, Palkovits R, Schlögl R, Su DS (2012) Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition. Energy Environ Sci 5:6278–6289CrossRefGoogle Scholar
  4. 4.
    García-Bordejé E, Armenise S, Roldán L (2014) Toward practical application of H2 generation from ammonia decomposition guided by rational catalyst design. Catal Rev Sci Eng 56:220–237CrossRefGoogle Scholar
  5. 5.
    Bell TE, Torrente-Murciano L (2016) H2 production via ammonia decomposition using non-noble metal catalysts: a review. Top Catal 59:1438–1457CrossRefGoogle Scholar
  6. 6.
    Ganley JC, Thomas FS, Seebauer EG, Masel RI (2004) A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia. Catal Lett 96:117–122CrossRefGoogle Scholar
  7. 7.
    Boisen A, Dahl S, Nørskov JK, Christensen CH (2005) Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst. J Catal 230:309–312CrossRefGoogle Scholar
  8. 8.
    Liang C, Li W, Wei Z, Xin Q, Li C (2000) Catalytic decomposition of ammonia over nitrided MoNx/α-Al2O3 and NiMoNy/α-Al2O3 catalysts. Ind Eng Chem Res 39:3694–3697CrossRefGoogle Scholar
  9. 9.
    Chellappa AS, Fischer CM, Thomson WJ (2002) Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications. Appl Catal A Gen 227:231–240CrossRefGoogle Scholar
  10. 10.
    Lu CS, Li XN, Zhu YF, Liu HZ, Zhou CH (2004) Ammonia decomposition over bimetallic nitrides supported on γ-Al2O3. Chin Chem Lett 15:105–108Google Scholar
  11. 11.
    Zhang J, Müller J-O, Zheng W, Wang D, Su D, Schlögl R (2008) Individual Fe–Co alloy nanoparticles on carbon nanotubes: structural and catalytic properties. Nano Lett 8:2738–2743CrossRefGoogle Scholar
  12. 12.
    Duan X, Qian G, Zhou X, Chen D, Yuan W (2012) MCM-41 supported Co–Mo bimetallic catalysts for enhanced hydrogen production by ammonia decomposition. Chem Eng J 207–208:103–108CrossRefGoogle Scholar
  13. 13.
    Lorenzut B, Montini T, Bevilacqua M, Fornasiero P (2012) FeMo-based catalysts for H2 production by NH3 decomposition. Appl Catal B Environ 125:409–417CrossRefGoogle Scholar
  14. 14.
    Simonsen SB, Chakraborty D, Chorkendorff I, Dahl S (2012) Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition. Appl Catal A Gen 447–448:22–31CrossRefGoogle Scholar
  15. 15.
    Ji J, Duan X, Qian G, Zhou X, Tong G, Yuan W (2014) Towards an efficient CoMo/γ-Al2O3 catalyst using metal amine metallate as an active phase precursor: enhanced hydrogen production by ammonia decomposition. Int J Hydrog Energy 39:12490–12498CrossRefGoogle Scholar
  16. 16.
    Podila S, Zaman SF, Driss H, Alhamed YA, Al-Zahrani AA, Petrov LA (2016) Hydrogen production by ammonia decomposition using high surface area Mo2N and Co3Mo3N catalysts. Catal Sci Technol 6:1496–1506CrossRefGoogle Scholar
  17. 17.
    Duan X, Ji J, Yan X, Qian G, Chen D, Zhou X (2016) Understanding Co-Mo catalyzed ammonia decomposition: influence of calcination atmosphere and identification of active phase. ChemCatChem 8:938–945CrossRefGoogle Scholar
  18. 18.
    Leybo DV, Baiguzhina AN, Muratov DS, Arkhipov DI, Kolesnikov EA, Levina VV, Kosova NI, Kuznetsov DV (2016) Effects of composition and production route on structure and catalytic activity for ammonia decomposition reaction of ternary Ni–Mo nitride catalysts. Int J Hydrog Energy 41:3854–3860CrossRefGoogle Scholar
  19. 19.
    Luo Z, Castleman AW Jr, Khanna SN (2016) Reactivity of metal clusters. Chem Rev 116:14456–14492CrossRefGoogle Scholar
  20. 20.
    Gallezot P (2002) Preparation of metal clusters in zeolites. In: Karge HG, Weitkamp J (eds) Molecular sieves: post-synthesis modification I. Springer, Berlin, pp 257–305CrossRefGoogle Scholar
  21. 21.
    Irion MP, Schnabel P (1991) FT-ICR studies of sputtered metal cluster ions. 5. The chemistry of iron cluster cations with ammonia and hydrazine. J Phys Chem 95:10596–10599CrossRefGoogle Scholar
  22. 22.
    Liyanage R, Griffin JB, Armentrout PB (2003) Thermodynamics of ammonia activation by iron cluster cations: guided ion beam studies of the reactions of Fen+ (n = 2–10,14) with ND3. J Chem Phys 119:8979–8995CrossRefGoogle Scholar
  23. 23.
    Fossan KO, Uggerud E (2004) Reactions of cationic iron clusters with ammonia, models of nitrogen hydrogenation and dehydrogenation. Dalton Trans 892–897Google Scholar
  24. 24.
    Hirabayashi S, Ichihashi M, Kondow T (2010) Enhancement of ammonia dehydrogenation by introduction of oxygen onto cobalt and iron cluster cations. J Phys Chem A 114:13040–13044CrossRefGoogle Scholar
  25. 25.
    Schwarz H (2015) Doping effects in cluster-mediated bond activation. Angew Chem Int Ed 54:10090–10100CrossRefGoogle Scholar
  26. 26.
    Ichihashi M, Hanmura T, Yadav RT, Kondow T (2000) Adsorption and reaction of methanol molecule on nickel cluster ions, Nin + (n = 3–11). J Phys Chem A 104:11885–11890CrossRefGoogle Scholar
  27. 27.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2013) Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CTGoogle Scholar
  30. 30.
    Gehrke R, Gruene P, Fielicke A, Meijer G, Reuter K (2009) Nature of Ar bonding to small Con+ clusters and its effect on the structure determination by far-infrared absorption spectroscopy. J Chem Phys 130:034306CrossRefGoogle Scholar
  31. 31.
    Fielicke A, Ratsch C, von Helden G, Meijer G (2007) The far-infrared spectra of neutral and cationic niobium clusters: Nb5 0/+ to Nb9 0/+. J Chem Phys 127:234306CrossRefGoogle Scholar
  32. 32.
    Hanmura T, Ichihashi M, Okawa R, Kondow T (2009) Size-dependent reactivity of cobalt cluster ions with nitrogen monoxide: competition between chemisorption and decomposition of NO. Int J Mass Spectrom 280:184–189CrossRefGoogle Scholar
  33. 33.
    Nhat PV, Ngan VT, Nguyen MT (2010) A new look at the structure and vibrational spectra of small niobium clusters and their ions. J Phys Chem C 114:13210–13218CrossRefGoogle Scholar
  34. 34.
    Koszinowski K, Schröder D, Schwarz H (2003) Reactivity of small cationic platinum clusters. J Phys Chem A 107:4999–5006CrossRefGoogle Scholar
  35. 35.
    Ončák M, Cao Y, Beyer MK, Zahradník R, Schwarz H (2008) Gas-phase reactivities of charged platinum dimers with ammonia: a combined experimental/theoretical study. Chem Phys Lett 450:268–273CrossRefGoogle Scholar
  36. 36.
    Ončák M, Cao Y, Höckendorf RF, Beyer MK, Zahradník R, Schwarz H (2009) Thermal N–H bond activation on anionic and cationic platinum clusters: non-predetermined reaction pathways indicate transitions to a bulk surface reactivity. Chem Eur J 15:8465–8474CrossRefGoogle Scholar
  37. 37.
    Koszinowski K, Schlangen M, Schröder D, Schwarz H (2004) C–H- and N–H-activation by gaseous Rh2 + and PtRh+ cluster ions. Int J Mass Spectom 237:19–23CrossRefGoogle Scholar
  38. 38.
    Hirabayashi S, Ichihashi M (2016) Adsorption and dehydrogenation of ammonia on vanadium and niobium nitride cluster cations. Int J Mass Spectrom 407:86–91CrossRefGoogle Scholar
  39. 39.
    Su T (1994) Parametrization of kinetic energy dependences of ion-polar molecule collision rate constants by trajectory calculations. J Chem Phys 100:4703CrossRefGoogle Scholar
  40. 40.
    Kaya T, Kobayashi M, Shinohara H, Sato H (1991) Reactions of ammonia clusters with metal ions as studied by the laser ablation–molecular beam method: observation of clustered complex ions M+(NH3)n (n ≤ 20) and fragment complex ions with multiple hydrogen elimination M+(NH)m(NH3)n (m = 1,2). Chem Phys Lett 186:431–435CrossRefGoogle Scholar
  41. 41.
    Walter D, Armentrout PB (1998) Sequential bond dissociation energies of M+(NH3)x (x = 1–4) for M = Ti–Cu. J Am Chem Soc 120:3176–3187CrossRefGoogle Scholar
  42. 42.
    Imamura T, Ohashi K, Sasaki J, Inoue K, Furukawa K, Judai K, Nishi N, Sekiya H (2010) Infrared photodissociation spectroscopy of Co+(NH3)n and Ni+(NH3)n: preference for tetrahedral or square-planar coordination. Phys Chem Chem Phys 12:11647–11656CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.East Tokyo LaboratoryGenesis Research Institute, Inc.IchikawaJapan
  2. 2.Cluster Research Laboratory, Toyota Technological Institute: in East Tokyo LaboratoryGenesis Research Institute, Inc.IchikawaJapan

Personalised recommendations