Skip to main content
Log in

Consecutive Oxidation of Three H2 Molecules by a Gold-Vanadium Oxide Cluster Cation AuVO4 +

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Time-of-flight mass spectrometry experiments demonstrated that laser ablation generated and mass selected gold-vanadium heteronuclear oxide cluster AuVO4 + can oxidize three H2 molecules consecutively in an ion trap reactor. Quantum chemistry calculations were employed to reveal the elementary steps involved in the consecutive H2 oxidation. The positively charged gold in AuVO4 + functions as the active site to capture H2 and split the H–H bond in collaboration with the terminal lattice oxygen O2−, during the process of which the superoxide species O2 •− in AuVO4 + is activated and then dissociated to supply enough oxygen sites for the subsequent H2 oxidation. After the oxidation of three H2 molecules, the Au–O bond in AuVO4 + is converted to Au–V bond in product AuVO+ that is inert towards H2. In contast, cluster AuNbO4 + that is structurally related to AuVO4 + can oxdize only one H2 molecule. The origin of the different reactivities between two clusters was explored and the importance of different central metal in H2 oxidation was emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kubas GJ (2007) Chem Rev 107:4152–4205

    Article  CAS  Google Scholar 

  2. Bus E, Miller JT, van Bokhoven JA (2005) J Phys Chem B 109:14581–14587

    Article  CAS  Google Scholar 

  3. McEwan L, Julius M, Roberts S, Fletcher JCQ (2010) Gold Bull 43:298–306

    Article  CAS  Google Scholar 

  4. Zhang X, Shi H, Xu B-Q (2005) Angew Chem Int Ed 44:7132–7135

    Article  CAS  Google Scholar 

  5. Bond GC (2016) Gold Bull 49:53–61

    Article  CAS  Google Scholar 

  6. Carrasquillo-Flores R, Ro I, Kumbhalkar MD, Burt S, Carrero CA, Alba-Rubio AC, Miller JT, Hermans I, Huber GW, Dumesic JA (2015) J Am Chem Soc 137:10317–10325

    Article  CAS  Google Scholar 

  7. Ishito N, Hara K, Nakajima K, Fukuoka A (2016) J Energy Chem 25:306–310

    Article  Google Scholar 

  8. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301–309

    Article  CAS  Google Scholar 

  9. Green IX, Tang W, Neurock M, Yates JT Jr (2011) Angew Chem Int Ed 50:10186–10189

    Article  CAS  Google Scholar 

  10. Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Chem Commun 2058–2059

  11. Landon P, Collier PJ, Carley AF, Chadwick D, Papworth AJ, Burrows A, Kiely CJ, Hutchings GJ (2003) Phys Chem Chem Phys 5:1917–1923

    Article  CAS  Google Scholar 

  12. Chen MS, Goodman DW (2004) Science 306:252–255

    Article  CAS  Google Scholar 

  13. Lyalin A, Taketsugu T (2011) Faraday Discuss 152:185–201

    Article  CAS  Google Scholar 

  14. Boronat M, Concepcion P, Corma A (2009) J Phys Chem C 113:16772–16784

    Article  CAS  Google Scholar 

  15. Yang B, Cao X-M, Gong X-Q, Hu P (2012) Phys Chem Chem Phys 14:3741–3745

    Article  CAS  Google Scholar 

  16. Nakamura I, Mantoku H, Furukawa T, Fujitani T (2011) J Phys Chem C 115:16074–16080

    Article  CAS  Google Scholar 

  17. Fujitani T, Nakamura I, Akita T, Okumura M, Haruta M (2009) Angew Chem Int Ed 48:9515–9518

    Article  CAS  Google Scholar 

  18. Chen M, Cai Y, Yan Z, Goodman DW (2006) J Am Chem Soc 128:6341–6346

    Article  CAS  Google Scholar 

  19. Camellone MF, Marx D (2014) J Phys Chem C 118:20989–21000

    Article  Google Scholar 

  20. Widmann D, Hocking E, Behm RJ (2014) J Catal 317:272–276

    Article  CAS  Google Scholar 

  21. Ishida T, Koga H, Okumura M, Haruta M (2016) Chem Rec 16:2278–2293

    Article  CAS  Google Scholar 

  22. Haruta M (2003) Chem Rec 3:75–87

    Article  CAS  Google Scholar 

  23. Schwarz H, González-Navarrete P, Li J, Schlangen M, Sun X, Weiske T, Zhou S (2017) Organometallics 36:8–17

    Article  CAS  Google Scholar 

  24. Böhme DK, Schwarz H (2005) Angew Chem Int Ed 44:2336–2354

    Article  Google Scholar 

  25. O’Hair RAJ, Rijs NJ (2015) Acc Chem Res 48:329–340

    Article  Google Scholar 

  26. Nagata T, Miyajima K, Mafuné F (2016) J Phys Chem A 120:7624–7633

    Article  CAS  Google Scholar 

  27. Woodham AP, Fielicke A (2014) Gold clusters in the gas phase. In: Mingos DMP (ed) Gold Clusters, colloids and nanoparticles I. Springer, Cham, pp 243–278

    Google Scholar 

  28. Yin S, Bernstein ER (2012) Int J Mass Spectrom 321–322:49–65

    Article  Google Scholar 

  29. Ding X-L, Wu X-N, Zhao Y-X, He S-G (2012) Acc Chem Res 45:382–390

    Article  CAS  Google Scholar 

  30. Castleman AW Jr (2011) Catal Lett 141:1243–1253

    Article  CAS  Google Scholar 

  31. Gong Y, Zhou M, Andrews L (2009) Chem Rev 109:6765–6808

    Article  CAS  Google Scholar 

  32. Baranov V, Javahery G, Hopkinson AC, Böhme DK (1995) J Am Chem Soc 117:12801 – 12809

    Article  CAS  Google Scholar 

  33. Schröder D, Fiedler A, Ryan MF, Schwarz H (1994) J Phys Chem 98:68 – 70

    Article  Google Scholar 

  34. Clemmer DE, Chen Y-M, Khan FA, Armentrout PB (1994) J Phys Chem 98:6522 – 6529

    Article  CAS  Google Scholar 

  35. Chen Y-M, Clemmer DE, Armentrout PB (1994) J Am Chem Soc 116:7815–7826

    Article  CAS  Google Scholar 

  36. Ryan MF, Fiedler A, Schröder D, Schwarz H (1995) J Am Chem Soc 117:2033–2040

    Article  CAS  Google Scholar 

  37. Clemmer DE, Aristov N, Armentrout PB (1993) J Phys Chem 97:544–552

    Article  CAS  Google Scholar 

  38. Fiedler A, Kretzschmar I, Schröder D, Schwarz H (1996) J Am Chem Soc 118:9941–9952

    Article  CAS  Google Scholar 

  39. González-Navarrete P, Calatayud M, Andrés J, Ruipérez F, Roca-Sanjuán D (2013) J Phys Chem A 117:5354–5364

    Article  Google Scholar 

  40. Zhou M, Wang C, Zhuang J, Zhao Y, Zheng X (2011) J Phys Chem A 115:39–46

    Article  CAS  Google Scholar 

  41. Yuan Z, Zhao Y-X, Li X-N, He S-G (2013) Int J Mass Spectrom 354–355:105–112

    Article  Google Scholar 

  42. Zhou M, Wang C, Li Z, Zhuang J, Zhao Y, Zheng X, Fan K (2010) Angew Chem Int Ed 49:7757–7761

    Article  CAS  Google Scholar 

  43. Blagojevic V, Božović A, Orlova G, Bohme DK (2008) J Phys Chem A 112:10141–10146

    Article  CAS  Google Scholar 

  44. Brönstrup M, Schröder D, Kretzschmar I, Schwarz H, Harvey JN (2001) J Am Chem Soc 123:142–147

    Article  Google Scholar 

  45. Irikura KK, Beauchamp JL (1989) J Am Chem Soc 111:75–85

    Article  CAS  Google Scholar 

  46. Meng J-H, He S-G (2014) J Phys Chem Lett 5:3890–3894

    Article  CAS  Google Scholar 

  47. Jiang L-X, Li X-N, Li H-F, Zhou Z-X, He S-G (2016) Chem Asian J 11:2730–2734

    Article  CAS  Google Scholar 

  48. Zhou X-H, Li Z-Y, Ma T-M, He S-G (2016) J Phys Chem C 120:10452–10459

    Article  CAS  Google Scholar 

  49. Wu X-N, Xu B, Meng J-H, He S-G (2012) Int J Mass Spectrom 310:57–64

    Article  CAS  Google Scholar 

  50. Yuan Z, Li Z-Y, Zhou Z-X, Liu Q-Y, Zhao Y-X, He S-G (2014) J Phys Chem C 118:14967–14976

    Article  CAS  Google Scholar 

  51. Zhao Y-X, Li Z-Y, Yuan Z, Li X-N, He S-G (2014) Angew Chem Int Ed 53:9482–9486

    Article  CAS  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford

    Google Scholar 

  53. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835

    Article  Google Scholar 

  54. Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  55. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  56. Ding X-L, Li Z-Y, Meng J-H, Zhao Y-X, He S-G (2012) J Chem Phys 137:214311

    Article  Google Scholar 

  57. Schlegel HB (1982) J Comput Chem 3:214–218

    Article  CAS  Google Scholar 

  58. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  59. van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH (1994) Chem Rev 94:1873–1885

    Article  Google Scholar 

  60. Gioumousis G, Stevenson DP (1958) J Chem Phys 29:294–299

    Article  CAS  Google Scholar 

  61. Holm RH (1987) Chem Rev 87:1401–1449

    Article  CAS  Google Scholar 

  62. Wang L-N, Li Z-Y, Liu Q-Y, Meng J-H, He S-G, Ma T-M (2015) Angew Chem Int Ed 54:11720–11724

    Article  CAS  Google Scholar 

  63. Li X-N, Li Z-Y, Li H-F, He S-G (2016) Chem Eur J 22:9024–9029

    Article  CAS  Google Scholar 

  64. Li Z-Y, Yuan Z, Li X-N, Zhao Y-X, He S-G (2014) J Am Chem Soc 136:14307–14313

    Article  CAS  Google Scholar 

  65. Lang SM, Bernhardt TM, Barnett RN, Yoon B, Landman U (2009) J Am Chem Soc 131:8939–8951

    Article  CAS  Google Scholar 

  66. Green IX, Tang W, Neurock M, Yates JT (2013) Acc Chem Res 47:805–815

    Article  Google Scholar 

  67. Wilson NM, Flaherty DW (2016) J Am Chem Soc 138:574–586

    Article  CAS  Google Scholar 

  68. Jacob T (2006) Fuel Cells 6:159–181

    Article  CAS  Google Scholar 

  69. Wang Y, Balbuena PB (2005) J Chem Theory Comput 1:935–943

    Article  CAS  Google Scholar 

  70. Allred AL (1961) J Inorg Nucl Chem 17:215–221

    Article  CAS  Google Scholar 

  71. Slater JC (1964) J Chem Phys 41:3199–3204

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by the National Natural Science Foundation of China (Nos. 21573246, 21773073, and 91545122), the Natural Science Foundations of Guangdong Province (2016A030313458), Beijing Natural Science Foundation (2172059). X.-N.L. thanks the grant from the Youth Innovation Promotion Association, Chinese Academy of Sciences (2016030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Na Li, Tong-Mei Ma or Sheng-Gui He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 654 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, XP., Li, ZY., Li, XN. et al. Consecutive Oxidation of Three H2 Molecules by a Gold-Vanadium Oxide Cluster Cation AuVO4 + . Top Catal 61, 28–34 (2018). https://doi.org/10.1007/s11244-017-0860-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0860-7

Keywords

Navigation