Advertisement

Topics in Catalysis

, Volume 61, Issue 1–2, pp 28–34 | Cite as

Consecutive Oxidation of Three H2 Molecules by a Gold-Vanadium Oxide Cluster Cation AuVO4 +

  • Xiu-Ping Zou
  • Zi-Yu Li
  • Xiao-Na Li
  • Li-Na Wang
  • Hai-Fang Li
  • Tong-Mei Ma
  • Sheng-Gui He
Original Paper
  • 230 Downloads

Abstract

Time-of-flight mass spectrometry experiments demonstrated that laser ablation generated and mass selected gold-vanadium heteronuclear oxide cluster AuVO4 + can oxidize three H2 molecules consecutively in an ion trap reactor. Quantum chemistry calculations were employed to reveal the elementary steps involved in the consecutive H2 oxidation. The positively charged gold in AuVO4 + functions as the active site to capture H2 and split the H–H bond in collaboration with the terminal lattice oxygen O2−, during the process of which the superoxide species O2 •− in AuVO4 + is activated and then dissociated to supply enough oxygen sites for the subsequent H2 oxidation. After the oxidation of three H2 molecules, the Au–O bond in AuVO4 + is converted to Au–V bond in product AuVO+ that is inert towards H2. In contast, cluster AuNbO4 + that is structurally related to AuVO4 + can oxdize only one H2 molecule. The origin of the different reactivities between two clusters was explored and the importance of different central metal in H2 oxidation was emphasized.

Keywords

Gold Dihydrogen oxidation Atomic clusters Mass spectrometry Density functional theory calculations 

Notes

Acknowledgements

This research has been supported by the National Natural Science Foundation of China (Nos. 21573246, 21773073, and 91545122), the Natural Science Foundations of Guangdong Province (2016A030313458), Beijing Natural Science Foundation (2172059). X.-N.L. thanks the grant from the Youth Innovation Promotion Association, Chinese Academy of Sciences (2016030).

Supplementary material

11244_2017_860_MOESM1_ESM.docx (653 kb)
Supplementary material 1 (DOCX 654 KB)

References

  1. 1.
    Kubas GJ (2007) Chem Rev 107:4152–4205CrossRefGoogle Scholar
  2. 2.
    Bus E, Miller JT, van Bokhoven JA (2005) J Phys Chem B 109:14581–14587CrossRefGoogle Scholar
  3. 3.
    McEwan L, Julius M, Roberts S, Fletcher JCQ (2010) Gold Bull 43:298–306CrossRefGoogle Scholar
  4. 4.
    Zhang X, Shi H, Xu B-Q (2005) Angew Chem Int Ed 44:7132–7135CrossRefGoogle Scholar
  5. 5.
    Bond GC (2016) Gold Bull 49:53–61CrossRefGoogle Scholar
  6. 6.
    Carrasquillo-Flores R, Ro I, Kumbhalkar MD, Burt S, Carrero CA, Alba-Rubio AC, Miller JT, Hermans I, Huber GW, Dumesic JA (2015) J Am Chem Soc 137:10317–10325CrossRefGoogle Scholar
  7. 7.
    Ishito N, Hara K, Nakajima K, Fukuoka A (2016) J Energy Chem 25:306–310CrossRefGoogle Scholar
  8. 8.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301–309CrossRefGoogle Scholar
  9. 9.
    Green IX, Tang W, Neurock M, Yates JT Jr (2011) Angew Chem Int Ed 50:10186–10189CrossRefGoogle Scholar
  10. 10.
    Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Chem Commun 2058–2059Google Scholar
  11. 11.
    Landon P, Collier PJ, Carley AF, Chadwick D, Papworth AJ, Burrows A, Kiely CJ, Hutchings GJ (2003) Phys Chem Chem Phys 5:1917–1923CrossRefGoogle Scholar
  12. 12.
    Chen MS, Goodman DW (2004) Science 306:252–255CrossRefGoogle Scholar
  13. 13.
    Lyalin A, Taketsugu T (2011) Faraday Discuss 152:185–201CrossRefGoogle Scholar
  14. 14.
    Boronat M, Concepcion P, Corma A (2009) J Phys Chem C 113:16772–16784CrossRefGoogle Scholar
  15. 15.
    Yang B, Cao X-M, Gong X-Q, Hu P (2012) Phys Chem Chem Phys 14:3741–3745CrossRefGoogle Scholar
  16. 16.
    Nakamura I, Mantoku H, Furukawa T, Fujitani T (2011) J Phys Chem C 115:16074–16080CrossRefGoogle Scholar
  17. 17.
    Fujitani T, Nakamura I, Akita T, Okumura M, Haruta M (2009) Angew Chem Int Ed 48:9515–9518CrossRefGoogle Scholar
  18. 18.
    Chen M, Cai Y, Yan Z, Goodman DW (2006) J Am Chem Soc 128:6341–6346CrossRefGoogle Scholar
  19. 19.
    Camellone MF, Marx D (2014) J Phys Chem C 118:20989–21000CrossRefGoogle Scholar
  20. 20.
    Widmann D, Hocking E, Behm RJ (2014) J Catal 317:272–276CrossRefGoogle Scholar
  21. 21.
    Ishida T, Koga H, Okumura M, Haruta M (2016) Chem Rec 16:2278–2293CrossRefGoogle Scholar
  22. 22.
    Haruta M (2003) Chem Rec 3:75–87CrossRefGoogle Scholar
  23. 23.
    Schwarz H, González-Navarrete P, Li J, Schlangen M, Sun X, Weiske T, Zhou S (2017) Organometallics 36:8–17CrossRefGoogle Scholar
  24. 24.
    Böhme DK, Schwarz H (2005) Angew Chem Int Ed 44:2336–2354CrossRefGoogle Scholar
  25. 25.
    O’Hair RAJ, Rijs NJ (2015) Acc Chem Res 48:329–340CrossRefGoogle Scholar
  26. 26.
    Nagata T, Miyajima K, Mafuné F (2016) J Phys Chem A 120:7624–7633CrossRefGoogle Scholar
  27. 27.
    Woodham AP, Fielicke A (2014) Gold clusters in the gas phase. In: Mingos DMP (ed) Gold Clusters, colloids and nanoparticles I. Springer, Cham, pp 243–278Google Scholar
  28. 28.
    Yin S, Bernstein ER (2012) Int J Mass Spectrom 321–322:49–65CrossRefGoogle Scholar
  29. 29.
    Ding X-L, Wu X-N, Zhao Y-X, He S-G (2012) Acc Chem Res 45:382–390CrossRefGoogle Scholar
  30. 30.
    Castleman AW Jr (2011) Catal Lett 141:1243–1253CrossRefGoogle Scholar
  31. 31.
    Gong Y, Zhou M, Andrews L (2009) Chem Rev 109:6765–6808CrossRefGoogle Scholar
  32. 32.
    Baranov V, Javahery G, Hopkinson AC, Böhme DK (1995) J Am Chem Soc 117:12801 – 12809CrossRefGoogle Scholar
  33. 33.
    Schröder D, Fiedler A, Ryan MF, Schwarz H (1994) J Phys Chem 98:68 – 70CrossRefGoogle Scholar
  34. 34.
    Clemmer DE, Chen Y-M, Khan FA, Armentrout PB (1994) J Phys Chem 98:6522 – 6529CrossRefGoogle Scholar
  35. 35.
    Chen Y-M, Clemmer DE, Armentrout PB (1994) J Am Chem Soc 116:7815–7826CrossRefGoogle Scholar
  36. 36.
    Ryan MF, Fiedler A, Schröder D, Schwarz H (1995) J Am Chem Soc 117:2033–2040CrossRefGoogle Scholar
  37. 37.
    Clemmer DE, Aristov N, Armentrout PB (1993) J Phys Chem 97:544–552CrossRefGoogle Scholar
  38. 38.
    Fiedler A, Kretzschmar I, Schröder D, Schwarz H (1996) J Am Chem Soc 118:9941–9952CrossRefGoogle Scholar
  39. 39.
    González-Navarrete P, Calatayud M, Andrés J, Ruipérez F, Roca-Sanjuán D (2013) J Phys Chem A 117:5354–5364CrossRefGoogle Scholar
  40. 40.
    Zhou M, Wang C, Zhuang J, Zhao Y, Zheng X (2011) J Phys Chem A 115:39–46CrossRefGoogle Scholar
  41. 41.
    Yuan Z, Zhao Y-X, Li X-N, He S-G (2013) Int J Mass Spectrom 354–355:105–112CrossRefGoogle Scholar
  42. 42.
    Zhou M, Wang C, Li Z, Zhuang J, Zhao Y, Zheng X, Fan K (2010) Angew Chem Int Ed 49:7757–7761CrossRefGoogle Scholar
  43. 43.
    Blagojevic V, Božović A, Orlova G, Bohme DK (2008) J Phys Chem A 112:10141–10146CrossRefGoogle Scholar
  44. 44.
    Brönstrup M, Schröder D, Kretzschmar I, Schwarz H, Harvey JN (2001) J Am Chem Soc 123:142–147CrossRefGoogle Scholar
  45. 45.
    Irikura KK, Beauchamp JL (1989) J Am Chem Soc 111:75–85CrossRefGoogle Scholar
  46. 46.
    Meng J-H, He S-G (2014) J Phys Chem Lett 5:3890–3894CrossRefGoogle Scholar
  47. 47.
    Jiang L-X, Li X-N, Li H-F, Zhou Z-X, He S-G (2016) Chem Asian J 11:2730–2734CrossRefGoogle Scholar
  48. 48.
    Zhou X-H, Li Z-Y, Ma T-M, He S-G (2016) J Phys Chem C 120:10452–10459CrossRefGoogle Scholar
  49. 49.
    Wu X-N, Xu B, Meng J-H, He S-G (2012) Int J Mass Spectrom 310:57–64CrossRefGoogle Scholar
  50. 50.
    Yuan Z, Li Z-Y, Zhou Z-X, Liu Q-Y, Zhao Y-X, He S-G (2014) J Phys Chem C 118:14967–14976CrossRefGoogle Scholar
  51. 51.
    Zhao Y-X, Li Z-Y, Yuan Z, Li X-N, He S-G (2014) Angew Chem Int Ed 53:9482–9486CrossRefGoogle Scholar
  52. 52.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1, Gaussian, Inc., WallingfordGoogle Scholar
  53. 53.
    Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835CrossRefGoogle Scholar
  54. 54.
    Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theor Chim Acta 77:123–141CrossRefGoogle Scholar
  55. 55.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  56. 56.
    Ding X-L, Li Z-Y, Meng J-H, Zhao Y-X, He S-G (2012) J Chem Phys 137:214311CrossRefGoogle Scholar
  57. 57.
    Schlegel HB (1982) J Comput Chem 3:214–218CrossRefGoogle Scholar
  58. 58.
    Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527CrossRefGoogle Scholar
  59. 59.
    van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH (1994) Chem Rev 94:1873–1885CrossRefGoogle Scholar
  60. 60.
    Gioumousis G, Stevenson DP (1958) J Chem Phys 29:294–299CrossRefGoogle Scholar
  61. 61.
    Holm RH (1987) Chem Rev 87:1401–1449CrossRefGoogle Scholar
  62. 62.
    Wang L-N, Li Z-Y, Liu Q-Y, Meng J-H, He S-G, Ma T-M (2015) Angew Chem Int Ed 54:11720–11724CrossRefGoogle Scholar
  63. 63.
    Li X-N, Li Z-Y, Li H-F, He S-G (2016) Chem Eur J 22:9024–9029CrossRefGoogle Scholar
  64. 64.
    Li Z-Y, Yuan Z, Li X-N, Zhao Y-X, He S-G (2014) J Am Chem Soc 136:14307–14313CrossRefGoogle Scholar
  65. 65.
    Lang SM, Bernhardt TM, Barnett RN, Yoon B, Landman U (2009) J Am Chem Soc 131:8939–8951CrossRefGoogle Scholar
  66. 66.
    Green IX, Tang W, Neurock M, Yates JT (2013) Acc Chem Res 47:805–815CrossRefGoogle Scholar
  67. 67.
    Wilson NM, Flaherty DW (2016) J Am Chem Soc 138:574–586CrossRefGoogle Scholar
  68. 68.
    Jacob T (2006) Fuel Cells 6:159–181CrossRefGoogle Scholar
  69. 69.
    Wang Y, Balbuena PB (2005) J Chem Theory Comput 1:935–943CrossRefGoogle Scholar
  70. 70.
    Allred AL (1961) J Inorg Nucl Chem 17:215–221CrossRefGoogle Scholar
  71. 71.
    Slater JC (1964) J Chem Phys 41:3199–3204CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations