Skip to main content
Log in

Infrared Spectroscopy of Au(Acetylene)n + Complexes in the Gas Phase

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Au(C2H2)n + (n = 1–6) ion–molecule complexes are produced in the gas phase via pulsed laser vaporization in a supersonic expansion of acetylene and argon. Cations are size selected and studied with infrared photodissociation spectroscopy in the C–H stretching region (3000–3500 cm−1). Insight into the structure and bonding of these species is obtained from the number of infrared active bands, their relative intensities and their frequency positions. Density functional theory calculations provide structures for these complexes and predicted spectra are compared to the experiment. The combined data indicate that gold cation has a primary coordination number of two with respect to acetylene binding, and a secondary coordination sphere that is completed with a third ligand. Larger complexes (n = 4–6) are formed by solvation of the Au(C2H2)3 + core ion with acetylene, in a pattern like that seen previously for Cu(C2H2)n + complexes. Small differences in the spectra between corresponding copper and gold cation complexes are explained by theory, but only when relativistic corrections are included for the gold complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Heck RF (1974) Organotransition metal chemistry. Academic Press, New York

    Google Scholar 

  2. Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry principles of structure and reactivity. Harper Collins, New York

    Google Scholar 

  3. Crabtree RH (2009) The Organometallic chemistry of the transition metals. 5th edn, Wiley, Hoboken

    Google Scholar 

  4. Muetterties EL, Bleeke JR, Wucherer EJ, Albright TA (1982) Structural, stereochemical, and electronic features of arene-metal complexes. Chem Rev 82(5):499–525

    Article  CAS  Google Scholar 

  5. Ma JC, Dougherty DA (1997) The Cation—π interaction. Chem Rev 97(5):1303–1324

    Article  CAS  Google Scholar 

  6. Boor J (1979) Ziegler-Natta catalysis and polymerization. Academic Press, New York

    Google Scholar 

  7. Parshall GW (1980) Organometallic chemistry in homogeneous catalysis. Science 208(4449):1221–1224

    Article  CAS  Google Scholar 

  8. Trotuş I-T, Zimmermann T, Schüth F (2014) Catalytic reactions of acetylene: a feedstock for the chemical industry revisited. Chem Rev 114(3):1761–1782

    Article  Google Scholar 

  9. Bertini I, Gray HB, Stiefel EI, Valentine JS (2007) Biological inorganic chemistry: structure and reactivity. University Science Books, Sausalito

    Google Scholar 

  10. Steed JW, Atwood JL (2009) Supramolecular chemistry. Wiley, Chichester

    Book  Google Scholar 

  11. Davis ME (1993) New vistas in zeolite and molecular sieve catalysis. Acc Chem Res 26(3):111–115

    Article  CAS  Google Scholar 

  12. Lee JY, Farha OK, Roberts J, Scheidt KA (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459

    Article  CAS  Google Scholar 

  13. Yang X-F, Wang A, Qiao B, Li J, Liu J, Zhang T (2013) Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 46(8):1740–1748

    Article  CAS  Google Scholar 

  14. Eller K, Schwarz H (1991) Organometallic chemistry in the gas phase. Chem Rev 91(6):1121–1177

    Article  CAS  Google Scholar 

  15. Wiley KF, Cheng PY, Bishop MB, Duncan MA (1991) Charge-transfer photochemistry in ion-molecule cluster complexes of silver. J Am Chem Soc 113(13):4721–4728

    Article  Google Scholar 

  16. Freiser BS (ed) (1996) Organometallic ion chemistry. Kluwer, Dordrecht

    Google Scholar 

  17. Gidden J, van Koppen PAM, Bowers MT (1997) Dehydrogenation of ethene by Ti+ and V+: excited state effects on the mechanism for C–H bond activation from kinetic energy release distributions. J Am Chem Soc 119(17):3935–3941

    Article  CAS  Google Scholar 

  18. Gibson JK (1998) Gas-phase reactions of Tc+, Re+, Mo+ and Cu+ with alkenes. J Organomet Chem 558(1–2):51–60

    Article  CAS  Google Scholar 

  19. Sievers MR, Jarvis LM, Armentrout PB (1998) Transition metal ethene bonds: thermochemistry of M+(C2H4)n (M = Ti – Cu, n = 1 and 2) complexes. J Am Chem Soc 120(8):1891–1899

    Article  CAS  Google Scholar 

  20. Dunbar RC (2000) Photodissociation of trapped ions. Int J Mass Spectrom 200:(1–3):571–589

    Article  Google Scholar 

  21. Manard MJ, Kemper PR, Bowers MT (2005) Binding interactions of mono-and diatomic silver cations with small alkenes: experiment and theory. Int J Mass Spectrom 241:(2–3):109–117

    Article  CAS  Google Scholar 

  22. Manard MJ, Kemper PR, Carpenter CJ, Bowers MT (2005) Dissociation reactions of diatomic silver cations with small alkenes: experiment and theory. Int J Mass Spectrom 241:(2–3):99–108

    Article  CAS  Google Scholar 

  23. Bohme DK, Schwarz H (2005) Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. Angew Chem Int Ed 44(16):2336–2354

    Article  Google Scholar 

  24. Operti L, Rabezzana R (2006) Gas phase ion chemistry in organometallic systems. Mass Spectrom Rev 25(3):483–513

    Article  CAS  Google Scholar 

  25. Sharma P, Attah I, Momoh P, El-Shall MS (2011) Metal acetylene cluster ions M+(C2H2)n as model reactors for studying reactivity of laser-generated transition metal cations. Int J Mass Spectrom 300:(2–3):81–90

    Article  Google Scholar 

  26. Sodupe M, Bauschlicher CW (1991) Theoretical study of the bonding of the first- and second-row transition-metal positive ions to acetylene. J Phys Chem 95(22):8640–8645

    Article  CAS  Google Scholar 

  27. Sodupe M, Bauschlicher CW, Langhoff SR, Partridge H (1992) Theoretical study of the bonding of the first-row transition-metal positive ions to ethylene. J Phys Chem 96(5):2118–2122

    Article  CAS  Google Scholar 

  28. Hertwig RH, Koch W, Schröder D, Schwarz H, Hrušák J, Schwerdtfeger P (1996) A comparative computational study of cationic coinage metal—ethylene complexes (C2H4)M+ (M = Cu, Ag, and Au). J Phys Chem 100(30):12253–12260

    Article  CAS  Google Scholar 

  29. Stöckigt D, Schwarz J, Schwarz H (1996) Theoretical and experimental studies on the bond dissociation energies of Al(methane)+, Al(acetylene)+, Al(ethene)+, and Al(ethane)+. J Phys Chem 100(21):8786–8790

    Article  Google Scholar 

  30. Frenking G, Froehlich N (2000) The nature of the bonding in transition-metal compounds. Chem Rev 100(2):717–774

    Article  CAS  Google Scholar 

  31. Klippenstein SJ, Yang C-N (2000) Density functional theory predictions for the binding of transition metal cations to pi systems: from acetylene to coronene and tribenzocyclyne. Int J Mass Spectrom 201(1–3):253–267

    Article  CAS  Google Scholar 

  32. Wesolowski SS, King RA, Schaefer HF, Duncan MA (2000) Coupled-cluster electronic spectra for the Ca+-acetylene π complex and comparisons to its alkaline earth analogs. J Chem Phys 113(2):701–706

    Article  CAS  Google Scholar 

  33. Duncan MA (1997) Spectroscopy of metal ion complexes: gas phase models for solvation. Ann Rev Phys Chem 48:69–93

    Article  CAS  Google Scholar 

  34. Duncan MA (2000) Frontiers in the spectroscopy of mass-selected molecular ions. Int J Mass Spectrom 200(1–3):545–569

    Article  CAS  Google Scholar 

  35. Baer T, Dunbar RC (2010) Ion spectroscopy: where did it come from; where is it now; and where is it going? J Am Soc Mass Spectrom 21(5):681–693

    Article  CAS  Google Scholar 

  36. France MR, Pullins SH, Duncan MA (1998) Spectroscopy of the Ca+-acetylene π complex. J Chem Phys 108(17):7049–7051

    Article  CAS  Google Scholar 

  37. Reddic JE, Duncan MA (1999) Photodissociation spectroscopy of the Mg+-C2H2 π-complex. Chem Phys Lett 312:(2–4):96–100

    Article  CAS  Google Scholar 

  38. Chen J, Wong TH, Cheng YC, Montgomery K, Kleiber PD (1998) Photodissociation spectroscopy and dynamics of MgC2H4 +. J Chem Phys 108(6):2285–2296

    Article  CAS  Google Scholar 

  39. Chen J, Wong T-H, Kleiber PD, Yang K-H (1999) Photofragmentation spectroscopy of Al+(C2H4). J Chem Phys 110(24):11798–11805

    Article  CAS  Google Scholar 

  40. Lu W-Y, Kleiber PD, Young MA, Yang K-H (2001) Photodissociation spectroscopy of Zn+(C2H4). J Chem Phys 115(13):5823–5829

    Article  CAS  Google Scholar 

  41. Lu WY, Liu RG, Wong TH, Chen J, Kleiber PD (2002) Photoinduced charge transfer dissociation of Al+ethene, propene, and butene. J Phys Chem A 106(5):725–730

    Article  CAS  Google Scholar 

  42. Stringer KL, Citir M, Metz RB (2004) Photofragment spectroscopy of π complexes: Au+(C2H4) and Pt+(C2H4). J Phys Chem A 108(34):6996–7002

    Article  CAS  Google Scholar 

  43. Hewage D, Silva WR, Cao W, Yang D-S (2016) La-Activated bicyclo-oligomerization of acetylene to naphthalene. J Am Chem Soc 138(8):2468–2471

    Article  CAS  Google Scholar 

  44. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordinated compounds, 5th edn. Wiley, New York

    Google Scholar 

  45. Walters RS, Jaeger TD, Duncan MA (2002) Infrared spectroscopy of Ni+(C2H2)n complexes: evidence for intracluster cyclization reactions. J Phys Chem A 106(44):10482–10487

    Article  CAS  Google Scholar 

  46. Walters RS, Pillai ED, Schleyer PvR, Duncan MA (2005) Vibrational spectroscopy and structures of Ni+(C2H2)n (n = 1–4) complexes. J Am Chem Soc 127(48):17030–17042

    Article  CAS  Google Scholar 

  47. Walters RS, Schleyer PvR, Corminboeuf C, Duncan MA (2005) Structural trends in transition metal cation-acetylene complexes revealed through the C–H stretching fundamentals. J Am Chem Soc 127(4):1100–1101

    Article  CAS  Google Scholar 

  48. Brathwaite AD, Ward TB, Walters RS, Duncan MA (2015) Cation—π and CH—π interactions in the coordination and solvation of Cu+(acetylene)n complexes. J Phys Chem A 119(22):5658–5667

    Article  CAS  Google Scholar 

  49. Dewar MJS (1951) A review of the π-complex theory. Bull Soc Chim Fr C71–C79,

  50. Chatt J, Duncanson LA (1953) Olefin co-ordination compounds. III. Infrared spectra and structure: attempted preparation of acetylene compounds. J Chem Soc 2939–2947

  51. Ricks AM, Reed ZE, Duncan MA (2011) Infrared spectroscopy of mass-selected metal carbonyl cations. J Mol Spectrosc 266(2):63–74

    Article  CAS  Google Scholar 

  52. Duncan MA (2012) Laser vaporization cluster sources. Rev Sci Instrum 83(4):041101

    Article  Google Scholar 

  53. Cornett DS, Peschke M, LaiHing K, Cheng PY, Willey KF, Duncan MA (1992) A reflectron time-of-flight mass spectrometer for laser photodissociation. Rev Sci Instrum 63(4):2177–2186

    Article  CAS  Google Scholar 

  54. Okumura M, Yeh LI, Myers JD, Lee YT (1986) Infrared spectra of the cluster ions H7O3 +⋅H2 and H9O4 +⋅H2. J Chem Phys 85(4):2328–2329

    Article  CAS  Google Scholar 

  55. Okumura M, Yeh LI, Lee YT (1988) Infrared spectroscopy of the cluster ions hydrogen triatomic monopositive ion-(molecular hydrogen)n (H3 +⋅(H2)n). J Chem Phys 88(1):79–91

    Article  CAS  Google Scholar 

  56. Ebata T, Fujii A, Mikami N (1998) Vibrational spectroscopy of small-sized hydrogen-bonded clusters and their ions. Int Rev Phys Chem 17(3):331–361

    Article  CAS  Google Scholar 

  57. Bieske EJ, Dopfer O (2000) High-resolution spectroscopy of cluster ions. Chem Rev 100(11):3963–3998

    Article  CAS  Google Scholar 

  58. Robertson WH, Johnson MA (2003) Molecular aspects of halide ion hydration: the cluster approach. Annu Rev Phys Chem 54(1):173–213

    Article  CAS  Google Scholar 

  59. Duncan MA (2003) Infrared spectroscopy to probe structure and dynamics in metal ion-molecule complexes. Int Rev Phys Chem 22(2):407–435

    Article  CAS  Google Scholar 

  60. Neese F (2012) The ORCA program system. Wiley Interdis Rev 2(1):73–78

    CAS  Google Scholar 

  61. Pantazis DA, Chen XY, Landis CR, Neese F (2008) All-electron scalar relativistic basis sets for third-row transition metal atoms. J Chem Theory Comput 4(6):908–919

    Article  CAS  Google Scholar 

  62. Wüllen Cv (1998) Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations. J Chem Phys 109(2):392–399

    Article  Google Scholar 

  63. Velasquez J, Njegic B, Gordon MS, Duncan MA (2008) IR Photodissociation spectroscopy and theory of Au+(CO)n complexes: nonclassical carbonyls in the gas phase. J Phys Chem A 112(9):1907–1913

    Article  CAS  Google Scholar 

  64. Shuler K, Dykstra CE (2000) Interaction potentials and vibrational effects in the acetylene dimer. J Phys Chem A 104(19):4562–4570

    Article  CAS  Google Scholar 

  65. Cohen AJ, Mori-Sanchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112(1):289–320

    Article  CAS  Google Scholar 

  66. Shimanouchi T (2003) Molecular Vibrational Frequencies, NIST Chemistry WebBook, NIST Standard Reference Database Number 69. In: Linstrom PJ, Mallard WG (eds) National Institute of Standards and Technology, Gaithersburg, p 20899

    Google Scholar 

  67. Brathwaite AD, Abbott-Lyon HL, Duncan MA (2016) Distinctive coordination of CO vs N2 to rhodium cations: an infrared and computational study. J Phys Chem A 120(39):7659–7670

    Article  CAS  Google Scholar 

  68. Walters RS, Pillai ED, Duncan MA (2005) Solvation dynamics in Ni+(H2O)n complexes probed with infrared photodissociation spectroscopy. J Am Chem Soc 127(47):16599–16610

    Article  CAS  Google Scholar 

  69. Bandyopadhyay B, Reishus KN, Duncan MA (2013) Infrared spectroscopy of solvation in small Zn+(H2O)n complexes. J Phys Chem A 117(33):7794–7803

    Article  CAS  Google Scholar 

  70. Goel S, Velizhanin KA, Piryatinski A, Tretiak S, Ivanov SA (2010) DFT study of ligand binding to small gold clusters. J Phys Chem Lett 1(6):927–931

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge generous support for this work from the Air Force Office of Scientific Research through grant no. FA9550-15-1-0088. ADB wishes to acknowledge salary support from the National Science Foundation through HBCU-UP Award No. 1505095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Duncan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2749 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ward, T.B., Brathwaite, A.D. & Duncan, M.A. Infrared Spectroscopy of Au(Acetylene)n + Complexes in the Gas Phase. Top Catal 61, 49–61 (2018). https://doi.org/10.1007/s11244-017-0859-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0859-0

Keywords

Navigation