Topics in Catalysis

, Volume 61, Issue 1–2, pp 49–61 | Cite as

Infrared Spectroscopy of Au(Acetylene)n + Complexes in the Gas Phase

  • Timothy B. Ward
  • Antonio D. Brathwaite
  • Michael A. Duncan
Original Paper

Abstract

Au(C2H2)n + (n = 1–6) ion–molecule complexes are produced in the gas phase via pulsed laser vaporization in a supersonic expansion of acetylene and argon. Cations are size selected and studied with infrared photodissociation spectroscopy in the C–H stretching region (3000–3500 cm−1). Insight into the structure and bonding of these species is obtained from the number of infrared active bands, their relative intensities and their frequency positions. Density functional theory calculations provide structures for these complexes and predicted spectra are compared to the experiment. The combined data indicate that gold cation has a primary coordination number of two with respect to acetylene binding, and a secondary coordination sphere that is completed with a third ligand. Larger complexes (n = 4–6) are formed by solvation of the Au(C2H2)3 + core ion with acetylene, in a pattern like that seen previously for Cu(C2H2)n + complexes. Small differences in the spectra between corresponding copper and gold cation complexes are explained by theory, but only when relativistic corrections are included for the gold complexes.

Keywords

Organometallic ions Mass spectrometry Photodissociation Infrared spectroscopy 

Notes

Acknowledgements

We acknowledge generous support for this work from the Air Force Office of Scientific Research through grant no. FA9550-15-1-0088. ADB wishes to acknowledge salary support from the National Science Foundation through HBCU-UP Award No. 1505095.

Supplementary material

11244_2017_859_MOESM1_ESM.docx (2.7 mb)
Supplementary material 1 (DOCX 2749 KB)

References

  1. 1.
    Heck RF (1974) Organotransition metal chemistry. Academic Press, New YorkGoogle Scholar
  2. 2.
    Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry principles of structure and reactivity. Harper Collins, New YorkGoogle Scholar
  3. 3.
    Crabtree RH (2009) The Organometallic chemistry of the transition metals. 5th edn, Wiley, HobokenGoogle Scholar
  4. 4.
    Muetterties EL, Bleeke JR, Wucherer EJ, Albright TA (1982) Structural, stereochemical, and electronic features of arene-metal complexes. Chem Rev 82(5):499–525CrossRefGoogle Scholar
  5. 5.
    Ma JC, Dougherty DA (1997) The Cation—π interaction. Chem Rev 97(5):1303–1324CrossRefGoogle Scholar
  6. 6.
    Boor J (1979) Ziegler-Natta catalysis and polymerization. Academic Press, New YorkGoogle Scholar
  7. 7.
    Parshall GW (1980) Organometallic chemistry in homogeneous catalysis. Science 208(4449):1221–1224CrossRefGoogle Scholar
  8. 8.
    Trotuş I-T, Zimmermann T, Schüth F (2014) Catalytic reactions of acetylene: a feedstock for the chemical industry revisited. Chem Rev 114(3):1761–1782CrossRefGoogle Scholar
  9. 9.
    Bertini I, Gray HB, Stiefel EI, Valentine JS (2007) Biological inorganic chemistry: structure and reactivity. University Science Books, SausalitoGoogle Scholar
  10. 10.
    Steed JW, Atwood JL (2009) Supramolecular chemistry. Wiley, ChichesterCrossRefGoogle Scholar
  11. 11.
    Davis ME (1993) New vistas in zeolite and molecular sieve catalysis. Acc Chem Res 26(3):111–115CrossRefGoogle Scholar
  12. 12.
    Lee JY, Farha OK, Roberts J, Scheidt KA (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459CrossRefGoogle Scholar
  13. 13.
    Yang X-F, Wang A, Qiao B, Li J, Liu J, Zhang T (2013) Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 46(8):1740–1748CrossRefGoogle Scholar
  14. 14.
    Eller K, Schwarz H (1991) Organometallic chemistry in the gas phase. Chem Rev 91(6):1121–1177CrossRefGoogle Scholar
  15. 15.
    Wiley KF, Cheng PY, Bishop MB, Duncan MA (1991) Charge-transfer photochemistry in ion-molecule cluster complexes of silver. J Am Chem Soc 113(13):4721–4728CrossRefGoogle Scholar
  16. 16.
    Freiser BS (ed) (1996) Organometallic ion chemistry. Kluwer, DordrechtGoogle Scholar
  17. 17.
    Gidden J, van Koppen PAM, Bowers MT (1997) Dehydrogenation of ethene by Ti+ and V+: excited state effects on the mechanism for C–H bond activation from kinetic energy release distributions. J Am Chem Soc 119(17):3935–3941CrossRefGoogle Scholar
  18. 18.
    Gibson JK (1998) Gas-phase reactions of Tc+, Re+, Mo+ and Cu+ with alkenes. J Organomet Chem 558(1–2):51–60CrossRefGoogle Scholar
  19. 19.
    Sievers MR, Jarvis LM, Armentrout PB (1998) Transition metal ethene bonds: thermochemistry of M+(C2H4)n (M = Ti – Cu, n = 1 and 2) complexes. J Am Chem Soc 120(8):1891–1899CrossRefGoogle Scholar
  20. 20.
    Dunbar RC (2000) Photodissociation of trapped ions. Int J Mass Spectrom 200:(1–3):571–589CrossRefGoogle Scholar
  21. 21.
    Manard MJ, Kemper PR, Bowers MT (2005) Binding interactions of mono-and diatomic silver cations with small alkenes: experiment and theory. Int J Mass Spectrom 241:(2–3):109–117CrossRefGoogle Scholar
  22. 22.
    Manard MJ, Kemper PR, Carpenter CJ, Bowers MT (2005) Dissociation reactions of diatomic silver cations with small alkenes: experiment and theory. Int J Mass Spectrom 241:(2–3):99–108CrossRefGoogle Scholar
  23. 23.
    Bohme DK, Schwarz H (2005) Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. Angew Chem Int Ed 44(16):2336–2354CrossRefGoogle Scholar
  24. 24.
    Operti L, Rabezzana R (2006) Gas phase ion chemistry in organometallic systems. Mass Spectrom Rev 25(3):483–513CrossRefGoogle Scholar
  25. 25.
    Sharma P, Attah I, Momoh P, El-Shall MS (2011) Metal acetylene cluster ions M+(C2H2)n as model reactors for studying reactivity of laser-generated transition metal cations. Int J Mass Spectrom 300:(2–3):81–90CrossRefGoogle Scholar
  26. 26.
    Sodupe M, Bauschlicher CW (1991) Theoretical study of the bonding of the first- and second-row transition-metal positive ions to acetylene. J Phys Chem 95(22):8640–8645CrossRefGoogle Scholar
  27. 27.
    Sodupe M, Bauschlicher CW, Langhoff SR, Partridge H (1992) Theoretical study of the bonding of the first-row transition-metal positive ions to ethylene. J Phys Chem 96(5):2118–2122CrossRefGoogle Scholar
  28. 28.
    Hertwig RH, Koch W, Schröder D, Schwarz H, Hrušák J, Schwerdtfeger P (1996) A comparative computational study of cationic coinage metal—ethylene complexes (C2H4)M+ (M = Cu, Ag, and Au). J Phys Chem 100(30):12253–12260CrossRefGoogle Scholar
  29. 29.
    Stöckigt D, Schwarz J, Schwarz H (1996) Theoretical and experimental studies on the bond dissociation energies of Al(methane)+, Al(acetylene)+, Al(ethene)+, and Al(ethane)+. J Phys Chem 100(21):8786–8790CrossRefGoogle Scholar
  30. 30.
    Frenking G, Froehlich N (2000) The nature of the bonding in transition-metal compounds. Chem Rev 100(2):717–774CrossRefGoogle Scholar
  31. 31.
    Klippenstein SJ, Yang C-N (2000) Density functional theory predictions for the binding of transition metal cations to pi systems: from acetylene to coronene and tribenzocyclyne. Int J Mass Spectrom 201(1–3):253–267CrossRefGoogle Scholar
  32. 32.
    Wesolowski SS, King RA, Schaefer HF, Duncan MA (2000) Coupled-cluster electronic spectra for the Ca+-acetylene π complex and comparisons to its alkaline earth analogs. J Chem Phys 113(2):701–706CrossRefGoogle Scholar
  33. 33.
    Duncan MA (1997) Spectroscopy of metal ion complexes: gas phase models for solvation. Ann Rev Phys Chem 48:69–93CrossRefGoogle Scholar
  34. 34.
    Duncan MA (2000) Frontiers in the spectroscopy of mass-selected molecular ions. Int J Mass Spectrom 200(1–3):545–569CrossRefGoogle Scholar
  35. 35.
    Baer T, Dunbar RC (2010) Ion spectroscopy: where did it come from; where is it now; and where is it going? J Am Soc Mass Spectrom 21(5):681–693CrossRefGoogle Scholar
  36. 36.
    France MR, Pullins SH, Duncan MA (1998) Spectroscopy of the Ca+-acetylene π complex. J Chem Phys 108(17):7049–7051CrossRefGoogle Scholar
  37. 37.
    Reddic JE, Duncan MA (1999) Photodissociation spectroscopy of the Mg+-C2H2 π-complex. Chem Phys Lett 312:(2–4):96–100CrossRefGoogle Scholar
  38. 38.
    Chen J, Wong TH, Cheng YC, Montgomery K, Kleiber PD (1998) Photodissociation spectroscopy and dynamics of MgC2H4 +. J Chem Phys 108(6):2285–2296CrossRefGoogle Scholar
  39. 39.
    Chen J, Wong T-H, Kleiber PD, Yang K-H (1999) Photofragmentation spectroscopy of Al+(C2H4). J Chem Phys 110(24):11798–11805CrossRefGoogle Scholar
  40. 40.
    Lu W-Y, Kleiber PD, Young MA, Yang K-H (2001) Photodissociation spectroscopy of Zn+(C2H4). J Chem Phys 115(13):5823–5829CrossRefGoogle Scholar
  41. 41.
    Lu WY, Liu RG, Wong TH, Chen J, Kleiber PD (2002) Photoinduced charge transfer dissociation of Al+ethene, propene, and butene. J Phys Chem A 106(5):725–730CrossRefGoogle Scholar
  42. 42.
    Stringer KL, Citir M, Metz RB (2004) Photofragment spectroscopy of π complexes: Au+(C2H4) and Pt+(C2H4). J Phys Chem A 108(34):6996–7002CrossRefGoogle Scholar
  43. 43.
    Hewage D, Silva WR, Cao W, Yang D-S (2016) La-Activated bicyclo-oligomerization of acetylene to naphthalene. J Am Chem Soc 138(8):2468–2471CrossRefGoogle Scholar
  44. 44.
    Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordinated compounds, 5th edn. Wiley, New YorkGoogle Scholar
  45. 45.
    Walters RS, Jaeger TD, Duncan MA (2002) Infrared spectroscopy of Ni+(C2H2)n complexes: evidence for intracluster cyclization reactions. J Phys Chem A 106(44):10482–10487CrossRefGoogle Scholar
  46. 46.
    Walters RS, Pillai ED, Schleyer PvR, Duncan MA (2005) Vibrational spectroscopy and structures of Ni+(C2H2)n (n = 1–4) complexes. J Am Chem Soc 127(48):17030–17042CrossRefGoogle Scholar
  47. 47.
    Walters RS, Schleyer PvR, Corminboeuf C, Duncan MA (2005) Structural trends in transition metal cation-acetylene complexes revealed through the C–H stretching fundamentals. J Am Chem Soc 127(4):1100–1101CrossRefGoogle Scholar
  48. 48.
    Brathwaite AD, Ward TB, Walters RS, Duncan MA (2015) Cation—π and CH—π interactions in the coordination and solvation of Cu+(acetylene)n complexes. J Phys Chem A 119(22):5658–5667CrossRefGoogle Scholar
  49. 49.
    Dewar MJS (1951) A review of the π-complex theory. Bull Soc Chim Fr C71–C79,Google Scholar
  50. 50.
    Chatt J, Duncanson LA (1953) Olefin co-ordination compounds. III. Infrared spectra and structure: attempted preparation of acetylene compounds. J Chem Soc 2939–2947Google Scholar
  51. 51.
    Ricks AM, Reed ZE, Duncan MA (2011) Infrared spectroscopy of mass-selected metal carbonyl cations. J Mol Spectrosc 266(2):63–74CrossRefGoogle Scholar
  52. 52.
    Duncan MA (2012) Laser vaporization cluster sources. Rev Sci Instrum 83(4):041101CrossRefGoogle Scholar
  53. 53.
    Cornett DS, Peschke M, LaiHing K, Cheng PY, Willey KF, Duncan MA (1992) A reflectron time-of-flight mass spectrometer for laser photodissociation. Rev Sci Instrum 63(4):2177–2186CrossRefGoogle Scholar
  54. 54.
    Okumura M, Yeh LI, Myers JD, Lee YT (1986) Infrared spectra of the cluster ions H7O3 +⋅H2 and H9O4 +⋅H2. J Chem Phys 85(4):2328–2329CrossRefGoogle Scholar
  55. 55.
    Okumura M, Yeh LI, Lee YT (1988) Infrared spectroscopy of the cluster ions hydrogen triatomic monopositive ion-(molecular hydrogen)n (H3 +⋅(H2)n). J Chem Phys 88(1):79–91CrossRefGoogle Scholar
  56. 56.
    Ebata T, Fujii A, Mikami N (1998) Vibrational spectroscopy of small-sized hydrogen-bonded clusters and their ions. Int Rev Phys Chem 17(3):331–361CrossRefGoogle Scholar
  57. 57.
    Bieske EJ, Dopfer O (2000) High-resolution spectroscopy of cluster ions. Chem Rev 100(11):3963–3998CrossRefGoogle Scholar
  58. 58.
    Robertson WH, Johnson MA (2003) Molecular aspects of halide ion hydration: the cluster approach. Annu Rev Phys Chem 54(1):173–213CrossRefGoogle Scholar
  59. 59.
    Duncan MA (2003) Infrared spectroscopy to probe structure and dynamics in metal ion-molecule complexes. Int Rev Phys Chem 22(2):407–435CrossRefGoogle Scholar
  60. 60.
    Neese F (2012) The ORCA program system. Wiley Interdis Rev 2(1):73–78Google Scholar
  61. 61.
    Pantazis DA, Chen XY, Landis CR, Neese F (2008) All-electron scalar relativistic basis sets for third-row transition metal atoms. J Chem Theory Comput 4(6):908–919CrossRefGoogle Scholar
  62. 62.
    Wüllen Cv (1998) Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations. J Chem Phys 109(2):392–399CrossRefGoogle Scholar
  63. 63.
    Velasquez J, Njegic B, Gordon MS, Duncan MA (2008) IR Photodissociation spectroscopy and theory of Au+(CO)n complexes: nonclassical carbonyls in the gas phase. J Phys Chem A 112(9):1907–1913CrossRefGoogle Scholar
  64. 64.
    Shuler K, Dykstra CE (2000) Interaction potentials and vibrational effects in the acetylene dimer. J Phys Chem A 104(19):4562–4570CrossRefGoogle Scholar
  65. 65.
    Cohen AJ, Mori-Sanchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112(1):289–320CrossRefGoogle Scholar
  66. 66.
    Shimanouchi T (2003) Molecular Vibrational Frequencies, NIST Chemistry WebBook, NIST Standard Reference Database Number 69. In: Linstrom PJ, Mallard WG (eds) National Institute of Standards and Technology, Gaithersburg, p 20899Google Scholar
  67. 67.
    Brathwaite AD, Abbott-Lyon HL, Duncan MA (2016) Distinctive coordination of CO vs N2 to rhodium cations: an infrared and computational study. J Phys Chem A 120(39):7659–7670CrossRefGoogle Scholar
  68. 68.
    Walters RS, Pillai ED, Duncan MA (2005) Solvation dynamics in Ni+(H2O)n complexes probed with infrared photodissociation spectroscopy. J Am Chem Soc 127(47):16599–16610CrossRefGoogle Scholar
  69. 69.
    Bandyopadhyay B, Reishus KN, Duncan MA (2013) Infrared spectroscopy of solvation in small Zn+(H2O)n complexes. J Phys Chem A 117(33):7794–7803CrossRefGoogle Scholar
  70. 70.
    Goel S, Velizhanin KA, Piryatinski A, Tretiak S, Ivanov SA (2010) DFT study of ligand binding to small gold clusters. J Phys Chem Lett 1(6):927–931CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Timothy B. Ward
    • 1
  • Antonio D. Brathwaite
    • 2
  • Michael A. Duncan
    • 1
  1. 1.Department of ChemistryUniversity of GeorgiaAthensUSA
  2. 2.College of Science and MathematicsUniversity of the Virgin IslandsSt ThomasUS Virgin Islands

Personalised recommendations