Abstract
The exothermic and barrierless activation of CO2 by the lanthanide gadolinium cation (Gd+) to form GdO+ and CO is investigated in detail using guided ion beam tandem mass spectrometry (GIBMS) and theory. Kinetic energy dependent product ion cross sections from collision-induced dissociation (CID) experiments of GdCO2 + are measured to determine the energetics of OGd+(CO) and Gd+(OCO) intermediates. Modeling these cross sections yields bond dissociation energies (BDEs) for OGd+–CO and Gd+–OCO of 0.57 ± 0.05 and 0.38 ± 0.05 eV, respectively. The OGd+–CO BDE is similar to that previously measured for Gd+–CO, which can be attributed to the comparable electrostatic interaction with CO in both complexes. The Gd+(OCO) adduct is identified from calculations to correspond to an electronically excited state. The thermochemistry here and the recently measured GdO+ BDE allows for the potential energy surface (PES) of the Gd+ reaction with CO2 to be deduced from experiment in some detail. Theoretical calculations are performed for comparison with the experimental thermochemistry and for insight into the electronic states of the GdCO2 + intermediates, transition states, and the reaction mechanism. Although the reaction between ground state Gd+ (10D) and CO2 (1Σg +) reactants to form ground state GdO+ (8Σ−) and CO (1Σ+) products is formally spin-forbidden, calculations indicate that there are octet and dectet surfaces having a small energy gap in the entrance channel, such that they can readily mix. Thereby, the reaction can efficiently proceed along the lowest energy octet surface to yield ground state products, consistent with the experimental observations of an efficient, barrierless process. At high collision energies, the measured GdO+ cross section from the Gd+ reaction with CO2 exhibits a distinct feature, attributed to formation of electronically excited GdO+ products along a single dectet PES in a diabatic and spin-allowed process. Modeling this high-energy feature gives an excitation energy of 3.25 ± 0.16 eV relative to the GdO+ (8Σ−) ground state, in good agreement with calculated excitation energies for GdO+ (10Π, 10Σ−) electronic states. The reactivity of Gd+ with CO2 is compared with the group 3 transition metal cations and other lanthanide cations and periodic trends are discussed.
This is a preview of subscription content, log in to check access.









References
- 1.
Sakakura T, Choi J-C, Yasuda H (2007) Chem Rev 107:2365–2387
- 2.
Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE (2011) Angew Chem Int Ed 50:8510–8537
- 3.
Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Chem Rev 113:6621–6658
- 4.
Schwarz H (2017) Coord Chem Rev 334:112–123
- 5.
Irikura KK, Beauchamp JL (1991) J Phys Chem 95:8344–8351
- 6.
Wesendrup R, Schwarz H (1995) Angew Chem Int Ed Engl 34:2033–2035
- 7.
Kappes MM, Staley RH (1981) J Phys Chem 85:942–944
- 8.
Kappes MM, Staley RH (1981) J Am Chem Soc 103:1286–1287
- 9.
Cheng P, Koyanagi GK, Bohme DK (2006) J Phys Chem A 110:12832–12838
- 10.
Dheandhanoo S, Chatterjee BK, Johnsen R (1985) J Chem Phys 83:3327–3329
- 11.
Koyanagi GK, Bohme DK (2006) J Phys Chem A 110:1232–1241
- 12.
Armentrout PB (2002) J Am Soc Mass Spectrom 13:419–434
- 13.
Armentrout PB (2000) Int J Mass Spectrom 200:219–241
- 14.
Sievers MR, Armentrout PB (1995) J Chem Phys 102:754–762
- 15.
Griffin JB, Armentrout PB (1997) J Chem Phys 107:5345–5355
- 16.
Griffin JB, Armentrout PB (1998) J Chem Phys 108:8062–8074
- 17.
Rodgers MT, Walker B, Armentrout PB (1999) Int J Mass Spectrom 182–183:99–120
- 18.
Sievers MR, Armentrout PB (1998) Int J Mass Spectrom 179–180:103–115
- 19.
Sievers MR, Armentrout PB (1999) Inorg Chem 38:397–402
- 20.
Sievers MR, Armentrout PB (1999) Int J Mass Spectrom 185–187:117–129
- 21.
Sievers MR, Armentrout PB (1998) J Phys Chem A 102:10754–10762
- 22.
Zhang X-G, Armentrout PB (2003) J Phys Chem A 107:8904–8914
- 23.
Clemmer DE, Weber ME, Armentrout PB (1992) J Phys Chem 96:10888–10893
- 24.
Armentrout PB, Cox RM (2017) Phys Chem Chem Phys 19:11075–11088
- 25.
Armentrout PB, Beauchamp JL (1980) Chem Phys 50:27–36
- 26.
Campbell ML (1999) Phys Chem Chem Phys 1:3731–3735
- 27.
Schofield K (2006) J Phys Chem A 110:6938–6947
- 28.
Ard SG, Shuman NS, Martinez O, Brumbach MT, Viggiano AA (2015) J Chem Phys 143:204303
- 29.
Konings RJM, Beneš O, Kovács A, Manara D, Sedmidubský D, Gorokhov L, Iorish VS, Yungman V, Shenyavskaya E, Osina E (2014) J Phys Chem Ref Data 43:013101
- 30.
Ard SG, Shuman NS, Martinez O, Armentrout PB, Viggiano AA (2016) J Chem Phys 145:084302
- 31.
Gibson JK (2003) J Phys Chem A 107:7891–7899
- 32.
Dai G-L, Wang C-F (2009) J Mol Struct 909:122–128
- 33.
Wang Y-C, Yang X-y, Geng Z-Y, Liu Z-Y (2006) Chem Phys Lett 431:39–44
- 34.
Wang Y-C, Liu H-W, Geng Z-Y, Lv L-L, Si Y-B, Wang Q-Y, Wang Q, Cui D-D (2011) Int J Quantum Chem 111:2021–2030
- 35.
Schröder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139–145
- 36.
Demireva M, Kim J, Armentrout PB (2016) J Phys Chem A 120:8550–8563
- 37.
Loh SK, Hales DA, Lian L, Armentrout PB (1989) J Chem Phys 90:5466–5485
- 38.
Ervin KM, Armentrout PB (1985) J Chem Phys 83:166–189
- 39.
Schultz RH, Crellin KC, Armentrout PB (1991) J Am Chem Soc 113:8590–8601
- 40.
Daly NR (1960) Rev Sci Instrum 31:264–267
- 41.
Muntean F, Armentrout PB (2001) J Chem Phys 115:1213–1228
- 42.
Weber ME, Elkind JL, Armentrout PB (1986) J Chem Phys 84:1521–1529
- 43.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Gaussian, Inc., Wallingford
- 44.
Becke AD (1993) J Chem Phys 98:5648–5652
- 45.
Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789
- 46.
Dolg M, Stoll H, Preuss H (1989) J Chem Phys 90:1730–1734
- 47.
Cao X, Dolg M (2001) J Chem Phys 115:7348–7355
- 48.
Perdew JP, Ernzerhof M, Burke K (1996) J Chem Phys 105:9982–9985
- 49.
Adamo C, Barone V (1999) J Chem Phys 110:6158–6170
- 50.
Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483
- 51.
Bartlett RJ, Watts JD, Kucharski SA, Noga J (1990) Chem Phys Lett 165:513–522
- 52.
Scuseria GE, Lee TJ (1990) J Chem Phys 93:5851–5855
- 53.
Crawford TD, Stanton JF (1998) Int J Quantum Chem 70:601–611
- 54.
Douglas M, Kroll NM (1974) Ann Phys 82:89–155
- 55.
Reiher M, Wolf A (2004) J Chem Phys 121:10945–10956
- 56.
Lu Q, Peterson KA (2016) J Chem Phys 145:054111
- 57.
Foresman JB, Frisch A (1996) Exploring Chemistry with Electronic Structure Methods. Gaussian, Pittsburgh
- 58.
Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045–1052
- 59.
Feller D (1996) J Comput Chem 17:1571–1586
- 60.
Gioumousis G, Stevenson DP (1958) J Chem Phys 29:294–299
- 61.
Koyanagi GK, Bohme DK (2001) J Phys Chem A 105:8964–8968
- 62.
Darwent Bd (1970) Bond Dissociation Energies in Simple Molecules. NSRDS-NBS31, 4:48
- 63.
Chesnavich WJ, Bowers MT (1979) J Phys Chem 83:900–905
- 64.
Hinton CS, Citir M, Manard M, Armentrout PB (2011) Int J Mass Spectrom 308:265–274
- 65.
Demireva M, Armentrout PB (2017) J Chem Phys 146:174302
- 66.
Burley JD, Ervin KM, Armentrout PB (1987) Int J Mass Spectrom Ion Processes 80:153–175
- 67.
Armentrout PB (2013) J Chem Phys 139:084305
- 68.
Hinton CS, Citir M, Armentrout PB (2013) Int J Mass Spectrom 354–355:87–98
- 69.
Kretzschmar I, Schröder D, Schwarz H, Rue C, Armentrout PB (1998) J Phys Chem A 102:10060–10073
- 70.
Rue C, Armentrout PB, Kretzschmar I, Schröder D, Harvey JN, Schwarz H (1999) J Chem Phys 110:7858–7870
- 71.
Shaik S (2013) Int J Mass Spectrom 354–355:5–14
- 72.
Harris N, Shaik S, Schröder D, Schwarz H (1999) Helv Chim Acta 82:1784–1797
- 73.
Rodgers MT, Armentrout PB (2007) Int J Mass Spectrom 267:167–182
- 74.
Martin JML (1996) Chem Phys Lett 259:669–678
- 75.
Cox RM, Kim J, Armentrout PB, Bartlett J, VanGundy RA, Heaven MC, Ard SG, Melko JJ, Shuman NS, Viggiano AA (2015) J Chem Phys 142:134307
Acknowledgements
The authors thank the U.S. Air Force Office of Scientific Research (FA9550-16-1-0095) for financial support, Professor Kirk A. Peterson for providing the all-electron basis sets, and the Center for High Performance Computing at the University of Utah for generous allocation of computer time. Additionally, some of the more computationally demanding calculations were performed on the large shared-memory cluster at the Pittsburgh Supercomputing Center at Carnegie Mellon University via the Extreme Science and Engineering Discovery Environment (XSEDE), under grant number TG-CHE170012. Christopher McNary is thanked for help with using these resources.
Author information
Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Demireva, M., Armentrout, P.B. Activation of CO2 by Gadolinium Cation (Gd+): Energetics and Mechanism from Experiment and Theory. Top Catal 61, 3–19 (2018). https://doi.org/10.1007/s11244-017-0858-1
Published:
Issue Date:
Keywords
- CO2 activation
- Lanthanides
- Gadolinium
- Guided ion beam
- Bond energies
- Potential energy surface