Activation of CO2 by Gadolinium Cation (Gd+): Energetics and Mechanism from Experiment and Theory

Abstract

The exothermic and barrierless activation of CO2 by the lanthanide gadolinium cation (Gd+) to form GdO+ and CO is investigated in detail using guided ion beam tandem mass spectrometry (GIBMS) and theory. Kinetic energy dependent product ion cross sections from collision-induced dissociation (CID) experiments of GdCO2 + are measured to determine the energetics of OGd+(CO) and Gd+(OCO) intermediates. Modeling these cross sections yields bond dissociation energies (BDEs) for OGd+–CO and Gd+–OCO of 0.57 ± 0.05 and 0.38 ± 0.05 eV, respectively. The OGd+–CO BDE is similar to that previously measured for Gd+–CO, which can be attributed to the comparable electrostatic interaction with CO in both complexes. The Gd+(OCO) adduct is identified from calculations to correspond to an electronically excited state. The thermochemistry here and the recently measured GdO+ BDE allows for the potential energy surface (PES) of the Gd+ reaction with CO2 to be deduced from experiment in some detail. Theoretical calculations are performed for comparison with the experimental thermochemistry and for insight into the electronic states of the GdCO2 + intermediates, transition states, and the reaction mechanism. Although the reaction between ground state Gd+ (10D) and CO2 (1Σg +) reactants to form ground state GdO+ (8Σ) and CO (1Σ+) products is formally spin-forbidden, calculations indicate that there are octet and dectet surfaces having a small energy gap in the entrance channel, such that they can readily mix. Thereby, the reaction can efficiently proceed along the lowest energy octet surface to yield ground state products, consistent with the experimental observations of an efficient, barrierless process. At high collision energies, the measured GdO+ cross section from the Gd+ reaction with CO2 exhibits a distinct feature, attributed to formation of electronically excited GdO+ products along a single dectet PES in a diabatic and spin-allowed process. Modeling this high-energy feature gives an excitation energy of 3.25 ± 0.16 eV relative to the GdO+ (8Σ) ground state, in good agreement with calculated excitation energies for GdO+ (10Π, 10Σ) electronic states. The reactivity of Gd+ with CO2 is compared with the group 3 transition metal cations and other lanthanide cations and periodic trends are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

References

  1. 1.

    Sakakura T, Choi J-C, Yasuda H (2007) Chem Rev 107:2365–2387

    CAS  Article  Google Scholar 

  2. 2.

    Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE (2011) Angew Chem Int Ed 50:8510–8537

    CAS  Article  Google Scholar 

  3. 3.

    Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Chem Rev 113:6621–6658

    CAS  Article  Google Scholar 

  4. 4.

    Schwarz H (2017) Coord Chem Rev 334:112–123

    CAS  Article  Google Scholar 

  5. 5.

    Irikura KK, Beauchamp JL (1991) J Phys Chem 95:8344–8351

    CAS  Article  Google Scholar 

  6. 6.

    Wesendrup R, Schwarz H (1995) Angew Chem Int Ed Engl 34:2033–2035

    CAS  Article  Google Scholar 

  7. 7.

    Kappes MM, Staley RH (1981) J Phys Chem 85:942–944

    CAS  Article  Google Scholar 

  8. 8.

    Kappes MM, Staley RH (1981) J Am Chem Soc 103:1286–1287

    CAS  Article  Google Scholar 

  9. 9.

    Cheng P, Koyanagi GK, Bohme DK (2006) J Phys Chem A 110:12832–12838

    CAS  Article  Google Scholar 

  10. 10.

    Dheandhanoo S, Chatterjee BK, Johnsen R (1985) J Chem Phys 83:3327–3329

    CAS  Article  Google Scholar 

  11. 11.

    Koyanagi GK, Bohme DK (2006) J Phys Chem A 110:1232–1241

    CAS  Article  Google Scholar 

  12. 12.

    Armentrout PB (2002) J Am Soc Mass Spectrom 13:419–434

    CAS  Article  Google Scholar 

  13. 13.

    Armentrout PB (2000) Int J Mass Spectrom 200:219–241

    CAS  Article  Google Scholar 

  14. 14.

    Sievers MR, Armentrout PB (1995) J Chem Phys 102:754–762

    CAS  Article  Google Scholar 

  15. 15.

    Griffin JB, Armentrout PB (1997) J Chem Phys 107:5345–5355

    CAS  Article  Google Scholar 

  16. 16.

    Griffin JB, Armentrout PB (1998) J Chem Phys 108:8062–8074

    CAS  Article  Google Scholar 

  17. 17.

    Rodgers MT, Walker B, Armentrout PB (1999) Int J Mass Spectrom 182–183:99–120

    Article  Google Scholar 

  18. 18.

    Sievers MR, Armentrout PB (1998) Int J Mass Spectrom 179–180:103–115

    Article  Google Scholar 

  19. 19.

    Sievers MR, Armentrout PB (1999) Inorg Chem 38:397–402

    CAS  Article  Google Scholar 

  20. 20.

    Sievers MR, Armentrout PB (1999) Int J Mass Spectrom 185–187:117–129

    Article  Google Scholar 

  21. 21.

    Sievers MR, Armentrout PB (1998) J Phys Chem A 102:10754–10762

    CAS  Article  Google Scholar 

  22. 22.

    Zhang X-G, Armentrout PB (2003) J Phys Chem A 107:8904–8914

    CAS  Article  Google Scholar 

  23. 23.

    Clemmer DE, Weber ME, Armentrout PB (1992) J Phys Chem 96:10888–10893

    CAS  Article  Google Scholar 

  24. 24.

    Armentrout PB, Cox RM (2017) Phys Chem Chem Phys 19:11075–11088

    CAS  Article  Google Scholar 

  25. 25.

    Armentrout PB, Beauchamp JL (1980) Chem Phys 50:27–36

    CAS  Article  Google Scholar 

  26. 26.

    Campbell ML (1999) Phys Chem Chem Phys 1:3731–3735

    CAS  Article  Google Scholar 

  27. 27.

    Schofield K (2006) J Phys Chem A 110:6938–6947

    CAS  Article  Google Scholar 

  28. 28.

    Ard SG, Shuman NS, Martinez O, Brumbach MT, Viggiano AA (2015) J Chem Phys 143:204303

    Article  Google Scholar 

  29. 29.

    Konings RJM, Beneš O, Kovács A, Manara D, Sedmidubský D, Gorokhov L, Iorish VS, Yungman V, Shenyavskaya E, Osina E (2014) J Phys Chem Ref Data 43:013101

    Article  Google Scholar 

  30. 30.

    Ard SG, Shuman NS, Martinez O, Armentrout PB, Viggiano AA (2016) J Chem Phys 145:084302

    Article  Google Scholar 

  31. 31.

    Gibson JK (2003) J Phys Chem A 107:7891–7899

    CAS  Article  Google Scholar 

  32. 32.

    Dai G-L, Wang C-F (2009) J Mol Struct 909:122–128

    CAS  Article  Google Scholar 

  33. 33.

    Wang Y-C, Yang X-y, Geng Z-Y, Liu Z-Y (2006) Chem Phys Lett 431:39–44

    CAS  Article  Google Scholar 

  34. 34.

    Wang Y-C, Liu H-W, Geng Z-Y, Lv L-L, Si Y-B, Wang Q-Y, Wang Q, Cui D-D (2011) Int J Quantum Chem 111:2021–2030

    CAS  Article  Google Scholar 

  35. 35.

    Schröder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139–145

    Article  Google Scholar 

  36. 36.

    Demireva M, Kim J, Armentrout PB (2016) J Phys Chem A 120:8550–8563

    CAS  Article  Google Scholar 

  37. 37.

    Loh SK, Hales DA, Lian L, Armentrout PB (1989) J Chem Phys 90:5466–5485

    CAS  Article  Google Scholar 

  38. 38.

    Ervin KM, Armentrout PB (1985) J Chem Phys 83:166–189

    CAS  Article  Google Scholar 

  39. 39.

    Schultz RH, Crellin KC, Armentrout PB (1991) J Am Chem Soc 113:8590–8601

    CAS  Article  Google Scholar 

  40. 40.

    Daly NR (1960) Rev Sci Instrum 31:264–267

    CAS  Article  Google Scholar 

  41. 41.

    Muntean F, Armentrout PB (2001) J Chem Phys 115:1213–1228

    CAS  Article  Google Scholar 

  42. 42.

    Weber ME, Elkind JL, Armentrout PB (1986) J Chem Phys 84:1521–1529

    CAS  Article  Google Scholar 

  43. 43.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Gaussian, Inc., Wallingford

    Google Scholar 

  44. 44.

    Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Article  Google Scholar 

  45. 45.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    CAS  Article  Google Scholar 

  46. 46.

    Dolg M, Stoll H, Preuss H (1989) J Chem Phys 90:1730–1734

    CAS  Article  Google Scholar 

  47. 47.

    Cao X, Dolg M (2001) J Chem Phys 115:7348–7355

    CAS  Article  Google Scholar 

  48. 48.

    Perdew JP, Ernzerhof M, Burke K (1996) J Chem Phys 105:9982–9985

    CAS  Article  Google Scholar 

  49. 49.

    Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    CAS  Article  Google Scholar 

  50. 50.

    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483

    CAS  Article  Google Scholar 

  51. 51.

    Bartlett RJ, Watts JD, Kucharski SA, Noga J (1990) Chem Phys Lett 165:513–522

    CAS  Article  Google Scholar 

  52. 52.

    Scuseria GE, Lee TJ (1990) J Chem Phys 93:5851–5855

    CAS  Article  Google Scholar 

  53. 53.

    Crawford TD, Stanton JF (1998) Int J Quantum Chem 70:601–611

    CAS  Article  Google Scholar 

  54. 54.

    Douglas M, Kroll NM (1974) Ann Phys 82:89–155

    CAS  Article  Google Scholar 

  55. 55.

    Reiher M, Wolf A (2004) J Chem Phys 121:10945–10956

    CAS  Article  Google Scholar 

  56. 56.

    Lu Q, Peterson KA (2016) J Chem Phys 145:054111

    Article  Google Scholar 

  57. 57.

    Foresman JB, Frisch A (1996) Exploring Chemistry with Electronic Structure Methods. Gaussian, Pittsburgh

    Google Scholar 

  58. 58.

    Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045–1052

    CAS  Article  Google Scholar 

  59. 59.

    Feller D (1996) J Comput Chem 17:1571–1586

    CAS  Article  Google Scholar 

  60. 60.

    Gioumousis G, Stevenson DP (1958) J Chem Phys 29:294–299

    CAS  Article  Google Scholar 

  61. 61.

    Koyanagi GK, Bohme DK (2001) J Phys Chem A 105:8964–8968

    CAS  Article  Google Scholar 

  62. 62.

    Darwent Bd (1970) Bond Dissociation Energies in Simple Molecules. NSRDS-NBS31, 4:48

  63. 63.

    Chesnavich WJ, Bowers MT (1979) J Phys Chem 83:900–905

    CAS  Article  Google Scholar 

  64. 64.

    Hinton CS, Citir M, Manard M, Armentrout PB (2011) Int J Mass Spectrom 308:265–274

    CAS  Article  Google Scholar 

  65. 65.

    Demireva M, Armentrout PB (2017) J Chem Phys 146:174302

    Article  Google Scholar 

  66. 66.

    Burley JD, Ervin KM, Armentrout PB (1987) Int J Mass Spectrom Ion Processes 80:153–175

    CAS  Article  Google Scholar 

  67. 67.

    Armentrout PB (2013) J Chem Phys 139:084305

    CAS  Article  Google Scholar 

  68. 68.

    Hinton CS, Citir M, Armentrout PB (2013) Int J Mass Spectrom 354–355:87–98

    Article  Google Scholar 

  69. 69.

    Kretzschmar I, Schröder D, Schwarz H, Rue C, Armentrout PB (1998) J Phys Chem A 102:10060–10073

    CAS  Article  Google Scholar 

  70. 70.

    Rue C, Armentrout PB, Kretzschmar I, Schröder D, Harvey JN, Schwarz H (1999) J Chem Phys 110:7858–7870

    CAS  Article  Google Scholar 

  71. 71.

    Shaik S (2013) Int J Mass Spectrom 354–355:5–14

    Article  Google Scholar 

  72. 72.

    Harris N, Shaik S, Schröder D, Schwarz H (1999) Helv Chim Acta 82:1784–1797

    CAS  Article  Google Scholar 

  73. 73.

    Rodgers MT, Armentrout PB (2007) Int J Mass Spectrom 267:167–182

    CAS  Article  Google Scholar 

  74. 74.

    Martin JML (1996) Chem Phys Lett 259:669–678

    CAS  Article  Google Scholar 

  75. 75.

    Cox RM, Kim J, Armentrout PB, Bartlett J, VanGundy RA, Heaven MC, Ard SG, Melko JJ, Shuman NS, Viggiano AA (2015) J Chem Phys 142:134307

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the U.S. Air Force Office of Scientific Research (FA9550-16-1-0095) for financial support, Professor Kirk A. Peterson for providing the all-electron basis sets, and the Center for High Performance Computing at the University of Utah for generous allocation of computer time. Additionally, some of the more computationally demanding calculations were performed on the large shared-memory cluster at the Pittsburgh Supercomputing Center at Carnegie Mellon University via the Extreme Science and Engineering Discovery Environment (XSEDE), under grant number TG-CHE170012. Christopher McNary is thanked for help with using these resources.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. B. Armentrout.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 712 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Demireva, M., Armentrout, P.B. Activation of CO2 by Gadolinium Cation (Gd+): Energetics and Mechanism from Experiment and Theory. Top Catal 61, 3–19 (2018). https://doi.org/10.1007/s11244-017-0858-1

Download citation

Keywords

  • CO2 activation
  • Lanthanides
  • Gadolinium
  • Guided ion beam
  • Bond energies
  • Potential energy surface