Topics in Catalysis

, Volume 61, Issue 1–2, pp 3–19 | Cite as

Activation of CO2 by Gadolinium Cation (Gd+): Energetics and Mechanism from Experiment and Theory

  • Maria Demireva
  • P. B. ArmentroutEmail author
Original Paper


The exothermic and barrierless activation of CO2 by the lanthanide gadolinium cation (Gd+) to form GdO+ and CO is investigated in detail using guided ion beam tandem mass spectrometry (GIBMS) and theory. Kinetic energy dependent product ion cross sections from collision-induced dissociation (CID) experiments of GdCO2 + are measured to determine the energetics of OGd+(CO) and Gd+(OCO) intermediates. Modeling these cross sections yields bond dissociation energies (BDEs) for OGd+–CO and Gd+–OCO of 0.57 ± 0.05 and 0.38 ± 0.05 eV, respectively. The OGd+–CO BDE is similar to that previously measured for Gd+–CO, which can be attributed to the comparable electrostatic interaction with CO in both complexes. The Gd+(OCO) adduct is identified from calculations to correspond to an electronically excited state. The thermochemistry here and the recently measured GdO+ BDE allows for the potential energy surface (PES) of the Gd+ reaction with CO2 to be deduced from experiment in some detail. Theoretical calculations are performed for comparison with the experimental thermochemistry and for insight into the electronic states of the GdCO2 + intermediates, transition states, and the reaction mechanism. Although the reaction between ground state Gd+ (10D) and CO2 (1Σg +) reactants to form ground state GdO+ (8Σ) and CO (1Σ+) products is formally spin-forbidden, calculations indicate that there are octet and dectet surfaces having a small energy gap in the entrance channel, such that they can readily mix. Thereby, the reaction can efficiently proceed along the lowest energy octet surface to yield ground state products, consistent with the experimental observations of an efficient, barrierless process. At high collision energies, the measured GdO+ cross section from the Gd+ reaction with CO2 exhibits a distinct feature, attributed to formation of electronically excited GdO+ products along a single dectet PES in a diabatic and spin-allowed process. Modeling this high-energy feature gives an excitation energy of 3.25 ± 0.16 eV relative to the GdO+ (8Σ) ground state, in good agreement with calculated excitation energies for GdO+ (10Π, 10Σ) electronic states. The reactivity of Gd+ with CO2 is compared with the group 3 transition metal cations and other lanthanide cations and periodic trends are discussed.


CO2 activation Lanthanides Gadolinium Guided ion beam Bond energies Potential energy surface 



The authors thank the U.S. Air Force Office of Scientific Research (FA9550-16-1-0095) for financial support, Professor Kirk A. Peterson for providing the all-electron basis sets, and the Center for High Performance Computing at the University of Utah for generous allocation of computer time. Additionally, some of the more computationally demanding calculations were performed on the large shared-memory cluster at the Pittsburgh Supercomputing Center at Carnegie Mellon University via the Extreme Science and Engineering Discovery Environment (XSEDE), under grant number TG-CHE170012. Christopher McNary is thanked for help with using these resources.

Supplementary material

11244_2017_858_MOESM1_ESM.docx (713 kb)
Supplementary material 1 (DOCX 712 KB)


  1. 1.
    Sakakura T, Choi J-C, Yasuda H (2007) Chem Rev 107:2365–2387CrossRefGoogle Scholar
  2. 2.
    Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE (2011) Angew Chem Int Ed 50:8510–8537CrossRefGoogle Scholar
  3. 3.
    Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Chem Rev 113:6621–6658CrossRefGoogle Scholar
  4. 4.
    Schwarz H (2017) Coord Chem Rev 334:112–123CrossRefGoogle Scholar
  5. 5.
    Irikura KK, Beauchamp JL (1991) J Phys Chem 95:8344–8351CrossRefGoogle Scholar
  6. 6.
    Wesendrup R, Schwarz H (1995) Angew Chem Int Ed Engl 34:2033–2035CrossRefGoogle Scholar
  7. 7.
    Kappes MM, Staley RH (1981) J Phys Chem 85:942–944CrossRefGoogle Scholar
  8. 8.
    Kappes MM, Staley RH (1981) J Am Chem Soc 103:1286–1287CrossRefGoogle Scholar
  9. 9.
    Cheng P, Koyanagi GK, Bohme DK (2006) J Phys Chem A 110:12832–12838CrossRefGoogle Scholar
  10. 10.
    Dheandhanoo S, Chatterjee BK, Johnsen R (1985) J Chem Phys 83:3327–3329CrossRefGoogle Scholar
  11. 11.
    Koyanagi GK, Bohme DK (2006) J Phys Chem A 110:1232–1241CrossRefGoogle Scholar
  12. 12.
    Armentrout PB (2002) J Am Soc Mass Spectrom 13:419–434CrossRefGoogle Scholar
  13. 13.
    Armentrout PB (2000) Int J Mass Spectrom 200:219–241CrossRefGoogle Scholar
  14. 14.
    Sievers MR, Armentrout PB (1995) J Chem Phys 102:754–762CrossRefGoogle Scholar
  15. 15.
    Griffin JB, Armentrout PB (1997) J Chem Phys 107:5345–5355CrossRefGoogle Scholar
  16. 16.
    Griffin JB, Armentrout PB (1998) J Chem Phys 108:8062–8074CrossRefGoogle Scholar
  17. 17.
    Rodgers MT, Walker B, Armentrout PB (1999) Int J Mass Spectrom 182–183:99–120CrossRefGoogle Scholar
  18. 18.
    Sievers MR, Armentrout PB (1998) Int J Mass Spectrom 179–180:103–115CrossRefGoogle Scholar
  19. 19.
    Sievers MR, Armentrout PB (1999) Inorg Chem 38:397–402CrossRefGoogle Scholar
  20. 20.
    Sievers MR, Armentrout PB (1999) Int J Mass Spectrom 185–187:117–129CrossRefGoogle Scholar
  21. 21.
    Sievers MR, Armentrout PB (1998) J Phys Chem A 102:10754–10762CrossRefGoogle Scholar
  22. 22.
    Zhang X-G, Armentrout PB (2003) J Phys Chem A 107:8904–8914CrossRefGoogle Scholar
  23. 23.
    Clemmer DE, Weber ME, Armentrout PB (1992) J Phys Chem 96:10888–10893CrossRefGoogle Scholar
  24. 24.
    Armentrout PB, Cox RM (2017) Phys Chem Chem Phys 19:11075–11088CrossRefGoogle Scholar
  25. 25.
    Armentrout PB, Beauchamp JL (1980) Chem Phys 50:27–36CrossRefGoogle Scholar
  26. 26.
    Campbell ML (1999) Phys Chem Chem Phys 1:3731–3735CrossRefGoogle Scholar
  27. 27.
    Schofield K (2006) J Phys Chem A 110:6938–6947CrossRefGoogle Scholar
  28. 28.
    Ard SG, Shuman NS, Martinez O, Brumbach MT, Viggiano AA (2015) J Chem Phys 143:204303CrossRefGoogle Scholar
  29. 29.
    Konings RJM, Beneš O, Kovács A, Manara D, Sedmidubský D, Gorokhov L, Iorish VS, Yungman V, Shenyavskaya E, Osina E (2014) J Phys Chem Ref Data 43:013101CrossRefGoogle Scholar
  30. 30.
    Ard SG, Shuman NS, Martinez O, Armentrout PB, Viggiano AA (2016) J Chem Phys 145:084302CrossRefGoogle Scholar
  31. 31.
    Gibson JK (2003) J Phys Chem A 107:7891–7899CrossRefGoogle Scholar
  32. 32.
    Dai G-L, Wang C-F (2009) J Mol Struct 909:122–128CrossRefGoogle Scholar
  33. 33.
    Wang Y-C, Yang X-y, Geng Z-Y, Liu Z-Y (2006) Chem Phys Lett 431:39–44CrossRefGoogle Scholar
  34. 34.
    Wang Y-C, Liu H-W, Geng Z-Y, Lv L-L, Si Y-B, Wang Q-Y, Wang Q, Cui D-D (2011) Int J Quantum Chem 111:2021–2030CrossRefGoogle Scholar
  35. 35.
    Schröder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139–145CrossRefGoogle Scholar
  36. 36.
    Demireva M, Kim J, Armentrout PB (2016) J Phys Chem A 120:8550–8563CrossRefGoogle Scholar
  37. 37.
    Loh SK, Hales DA, Lian L, Armentrout PB (1989) J Chem Phys 90:5466–5485CrossRefGoogle Scholar
  38. 38.
    Ervin KM, Armentrout PB (1985) J Chem Phys 83:166–189CrossRefGoogle Scholar
  39. 39.
    Schultz RH, Crellin KC, Armentrout PB (1991) J Am Chem Soc 113:8590–8601CrossRefGoogle Scholar
  40. 40.
    Daly NR (1960) Rev Sci Instrum 31:264–267CrossRefGoogle Scholar
  41. 41.
    Muntean F, Armentrout PB (2001) J Chem Phys 115:1213–1228CrossRefGoogle Scholar
  42. 42.
    Weber ME, Elkind JL, Armentrout PB (1986) J Chem Phys 84:1521–1529CrossRefGoogle Scholar
  43. 43.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Gaussian, Inc., WallingfordGoogle Scholar
  44. 44.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  45. 45.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  46. 46.
    Dolg M, Stoll H, Preuss H (1989) J Chem Phys 90:1730–1734CrossRefGoogle Scholar
  47. 47.
    Cao X, Dolg M (2001) J Chem Phys 115:7348–7355CrossRefGoogle Scholar
  48. 48.
    Perdew JP, Ernzerhof M, Burke K (1996) J Chem Phys 105:9982–9985CrossRefGoogle Scholar
  49. 49.
    Adamo C, Barone V (1999) J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  50. 50.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483CrossRefGoogle Scholar
  51. 51.
    Bartlett RJ, Watts JD, Kucharski SA, Noga J (1990) Chem Phys Lett 165:513–522CrossRefGoogle Scholar
  52. 52.
    Scuseria GE, Lee TJ (1990) J Chem Phys 93:5851–5855CrossRefGoogle Scholar
  53. 53.
    Crawford TD, Stanton JF (1998) Int J Quantum Chem 70:601–611CrossRefGoogle Scholar
  54. 54.
    Douglas M, Kroll NM (1974) Ann Phys 82:89–155CrossRefGoogle Scholar
  55. 55.
    Reiher M, Wolf A (2004) J Chem Phys 121:10945–10956CrossRefGoogle Scholar
  56. 56.
    Lu Q, Peterson KA (2016) J Chem Phys 145:054111CrossRefGoogle Scholar
  57. 57.
    Foresman JB, Frisch A (1996) Exploring Chemistry with Electronic Structure Methods. Gaussian, PittsburghGoogle Scholar
  58. 58.
    Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045–1052CrossRefGoogle Scholar
  59. 59.
    Feller D (1996) J Comput Chem 17:1571–1586CrossRefGoogle Scholar
  60. 60.
    Gioumousis G, Stevenson DP (1958) J Chem Phys 29:294–299CrossRefGoogle Scholar
  61. 61.
    Koyanagi GK, Bohme DK (2001) J Phys Chem A 105:8964–8968CrossRefGoogle Scholar
  62. 62.
    Darwent Bd (1970) Bond Dissociation Energies in Simple Molecules. NSRDS-NBS31, 4:48Google Scholar
  63. 63.
    Chesnavich WJ, Bowers MT (1979) J Phys Chem 83:900–905CrossRefGoogle Scholar
  64. 64.
    Hinton CS, Citir M, Manard M, Armentrout PB (2011) Int J Mass Spectrom 308:265–274CrossRefGoogle Scholar
  65. 65.
    Demireva M, Armentrout PB (2017) J Chem Phys 146:174302CrossRefGoogle Scholar
  66. 66.
    Burley JD, Ervin KM, Armentrout PB (1987) Int J Mass Spectrom Ion Processes 80:153–175CrossRefGoogle Scholar
  67. 67.
    Armentrout PB (2013) J Chem Phys 139:084305CrossRefGoogle Scholar
  68. 68.
    Hinton CS, Citir M, Armentrout PB (2013) Int J Mass Spectrom 354–355:87–98CrossRefGoogle Scholar
  69. 69.
    Kretzschmar I, Schröder D, Schwarz H, Rue C, Armentrout PB (1998) J Phys Chem A 102:10060–10073CrossRefGoogle Scholar
  70. 70.
    Rue C, Armentrout PB, Kretzschmar I, Schröder D, Harvey JN, Schwarz H (1999) J Chem Phys 110:7858–7870CrossRefGoogle Scholar
  71. 71.
    Shaik S (2013) Int J Mass Spectrom 354–355:5–14CrossRefGoogle Scholar
  72. 72.
    Harris N, Shaik S, Schröder D, Schwarz H (1999) Helv Chim Acta 82:1784–1797CrossRefGoogle Scholar
  73. 73.
    Rodgers MT, Armentrout PB (2007) Int J Mass Spectrom 267:167–182CrossRefGoogle Scholar
  74. 74.
    Martin JML (1996) Chem Phys Lett 259:669–678CrossRefGoogle Scholar
  75. 75.
    Cox RM, Kim J, Armentrout PB, Bartlett J, VanGundy RA, Heaven MC, Ard SG, Melko JJ, Shuman NS, Viggiano AA (2015) J Chem Phys 142:134307CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of UtahSalt Lake CityUSA

Personalised recommendations