Advertisement

Topics in Catalysis

, Volume 61, Issue 5–6, pp 328–335 | Cite as

Dry Dehydrogenation of Ethanol on Pt–Cu Single Atom Alloys

  • Zhi-Tao Wang
  • Robert A. Hoyt
  • Mostafa El-Soda
  • Robert J. Madix
  • Efthimios Kaxiras
  • E. Charles H. SykesEmail author
Original Paper

Abstract

The non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen is an industrially relevant chemical conversion. Although Cu-based catalysts show high reactivity toward oxidative ethanol dehydrogenation, the flat Cu(111) surface is rather inactive for ethanol dehydrogenation in the absence of water, surface oxygen or defects. Herein we show, using experimental and theoretical studies of model systems, that adding 1% Pt into the surface of Cu(111) to form dilute Pt–Cu single atom alloys (SAAs) increases the activity of Cu(111) for ethanol dehydrogenation sixfold. The mechanism of ethanol dehydrogenation was investigated at the molecular level using scanning tunneling microscopy, temperature programmed experiments and density functional theory calculations. Our results demonstrate that Pt–Cu SAAs are much more active than Cu(111) for converting ethanol to acetaldehyde and hydrogen in the absence of surface oxygen and water. Specifically, the O–H bond of ethanol is activated at Pt sites below 160 K, followed by ethoxy spillover to Cu sites which results in a significant increase of the ethoxy intermediate yield. The C–H bond of ethoxy is then activated at 310 K, and the final product, acetaldehyde, desorbs from Cu(111) in a reaction rate limited process. Finally, we show that the Cu model surfaces exhibit stability with respect to poisoning as well as 100% selectivity in the alcohol dehydrogenation to acetaldehyde and hydrogen.

Keywords

Ethanol Dehydrogenation Cu(111) Platinum Single atom alloys Ultra-high vacuum 

Notes

Acknowledgements

We gratefully acknowledge support by Integrated Mesoscale Architectures for Sustainable Catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DESC0012573. Calculations used computing resources from the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility under Contract No. DE-AC02-05CH11231, and the Harvard Odyssey cluster.

References

  1. 1.
    Reuss G, Disteldorf W, Grundier O, Hilt A (1985) In: Ullmann IF, Gerhartz W, Yamamoto YS, Campbell FT, Pfefferkorn R, Rounsaville JF (eds) Ullmann’s encyclopedia of industrial chemistry, 5th edn. Wiley, Deerfield Beach, FL, p 619Google Scholar
  2. 2.
    Eckert M, Fleischmann G, Jira R, Bolt HM, Golka K (2000) Acetaldehyde. Ullmann’s encyclopedia of industrial chemistry, Wiley, Weinheim. doi: 10.1002/14356007.a01_031.pub2 Google Scholar
  3. 3.
    Usachev NY, Krukovskii IM, Kanaev SA (2004) The nonoxidative methanol dehydrogenation to formaldehyde: (a review). Pet Chem 44(6):379–394Google Scholar
  4. 4.
    Dai W, Ren L (1997) Handbook of heterogeneous catalysis. Wiley, WeinheimGoogle Scholar
  5. 5.
    Su S, Zaza P, Renken A (1994) Catalytic dehydrogenation of methanol to water-free formaldehyde. Chem Eng Technol 17(1):34–40. doi: 10.1002/ceat.270170106 CrossRefGoogle Scholar
  6. 6.
    Hashimoto K, Toukai N (1999) Dehydrogenation of alcohols over potassium zinc aluminum silicate hydroxide. J Mol Catal A 145(1–2):273–280. doi: 10.1016/S1381-1169(99)00018-7 CrossRefGoogle Scholar
  7. 7.
    Ren L-P, Dai W-L, Cao Y, Li H, Fan K (2003) First observation of highly efficient dehydrogenation of methanol to anhydrous formaldehyde over novel Ag-SiO2-MgO-Al2O3 catalyst. Chem Commun (Camb) (24):3030–3031. doi: 10.1039/B310316A
  8. 8.
    Ren L-P, Dai W-L, Yang X-L, Cao Y, Li H, Fan K-N (2004) Novel highly active Ag–SiO2–Al2O3–ZnO catalyst for the production of anhydrous HCHO from direct dehydrogenation of CH3OH. Appl Catal A 273(1–2):83–88. doi: 10.1016/j.apcata.2004.06.015 CrossRefGoogle Scholar
  9. 9.
    Katsuhiko T, Yutaka M, Tsuneo I (1985) Catalytic activities of coppers in the various oxidation states for the dehydrogenation of methanoL. Chem Lett 14(4):527–530. doi: 10.1246/cl.1985.527 CrossRefGoogle Scholar
  10. 10.
    Bowker M, Madix RJ (1982) XPS, UPS and thermal desorption studies of alcohol adsorption on Cu(110). Surf Sci 116(3):549–572. doi: 10.1016/0039-6028(82)90364-8 CrossRefGoogle Scholar
  11. 11.
    Wachs IE, Madix RJ (1978) The selective oxidation of CH3OH to H2CO on a copper(110) catalyst. J Catal 53(2):208–227. doi: 10.1016/0021-9517(78)90068-4 CrossRefGoogle Scholar
  12. 12.
    Sexton BA, Hughes AE, Avery NR (1985) Surface intermediates in the reaction of methanol, formaldehyde and methyl formate on copper (110). Appl Surf Sci 22:404–414. doi: 10.1016/0378-5963(85)90072-8 Google Scholar
  13. 13.
    Bowker M (1996) Active sites in methanol oxidation on Cu(110) determined by STM and molecular beam measurements. Top Catal 3(3):461–468. doi: 10.1007/bf02113868 CrossRefGoogle Scholar
  14. 14.
    Wang Z-T, Xu Y, El-Soda M, Lucci FR, Madix RJ, Friend CM, Sykes ECH (2017) Surface structure dependence of the dry dehydrogenation of alcohols on Cu(111) and Cu(110). J Phys Chem C 121(23):12800–12806. doi: 10.1021/acs.jpcc.7b02957 CrossRefGoogle Scholar
  15. 15.
    Chen AK, Masel R (1995) Direct conversion of methanol to formaldehyde in the absence of oxygen on Cu(210). Surf Sci 343(1):17–23. doi: 10.1016/0039-6028(95)00649-4 CrossRefGoogle Scholar
  16. 16.
    Boucher MB, Marcinkowski MD, Liriano ML, Murphy CJ, Lewis EA, Jewell AD, Mattera MFG, Kyriakou G, Flytzani-Stephanopoulos M, Sykes ECH (2013) Molecular-scale perspective of water-catalyzed methanol dehydrogenation to formaldehyde. ACS Nano 7(7):6181–6187. doi: 10.1021/nn402055k CrossRefGoogle Scholar
  17. 17.
    Pan M, Pozun ZD, Yu W-Y, Henkelman G, Mullins CB (2012) Structure revealing H/D exchange with co-adsorbed hydrogen and water on gold. J Phys Chem Lett 3(14):1894–1899. doi: 10.1021/jz3007707 CrossRefGoogle Scholar
  18. 18.
    Brush AJ, Pan M, Mullins CB (2012) Methanol O–H bond dissociation on H-precovered gold originating from a structure with a wide range of surface stability. J Phys Chem C 116(39):20982–20989. doi: 10.1021/jp308099y CrossRefGoogle Scholar
  19. 19.
    Shan J, Lucci FR, Liu J, El-Soda M, Marcinkowski MD, Allard LF, Sykes ECH, Flytzani-Stephanopoulos M (2016) Water co-catalyzed selective dehydrogenation of methanol to formaldehyde and hydrogen. Surf Sci 650:121–129. doi: 10.1016/j.susc.2016.02.010 CrossRefGoogle Scholar
  20. 20.
    Lucci FR, Lawton TJ, Pronschinske A, Sykes ECH (2014) Atomic scale surface structure of Pt/Cu(111) surface alloys. J Phys Chem C 118(6):3015–3022. doi: 10.1021/jp405254z CrossRefGoogle Scholar
  21. 21.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558–561CrossRefGoogle Scholar
  22. 22.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRefGoogle Scholar
  23. 23.
    Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metalamorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251–14269. doi: 10.1103/PhysRevB.49.14251 CrossRefGoogle Scholar
  24. 24.
    Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50. doi: 10.1016/0927-0256(96)00008-0 CrossRefGoogle Scholar
  25. 25.
    Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys Rev Lett 78(7):1396–1396. doi: 10.1103/PhysRevLett.78.1396 CrossRefGoogle Scholar
  26. 26.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  27. 27.
    Tkatchenko A, Scheffler M (2009) Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102(7):073005–073005. doi: 10.1103/PhysRevLett.102.073005 CrossRefGoogle Scholar
  28. 28.
    Heyden A, Bell AT, Keil FJ (2005) Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. J Chem Phys 123(22):224101–224101. doi: 10.1063/1.2104507 CrossRefGoogle Scholar
  29. 29.
    Henkelman G, Jónsson H (1999) A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys 111(15):7010–7022. doi: 10.1063/1.480097 CrossRefGoogle Scholar
  30. 30.
    Redhead PA (1962) Thermal desorption of gases. Vacuum 12(4):203–211. doi: 10.1016/0042-207X(62)90978-8 CrossRefGoogle Scholar
  31. 31.
    Campbell CT, Sellers JRV (2012) The Entropies of adsorbed molecules. J Am Chem Soc 134(43):18109–18115. doi: 10.1021/ja3080117 CrossRefGoogle Scholar
  32. 32.
    Lucci FR, Liu J, Marcinkowski MD, Yang M, Allard LF, Flytzani-Stephanopoulos M, Sykes ECH (2015) Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit. Nat Commun 6:8550. doi: 10.1038/ncomms9550 CrossRefGoogle Scholar
  33. 33.
    Fu Q, Luo Y (2013) Catalytic activity of single transition-metal atom doped in Cu(111) surface for heterogeneous hydrogenation. J Phys Chem C 117(28):14618–14624. doi: 10.1021/jp403902g CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Zhi-Tao Wang
    • 1
  • Robert A. Hoyt
    • 2
  • Mostafa El-Soda
    • 1
  • Robert J. Madix
    • 3
  • Efthimios Kaxiras
    • 2
    • 3
  • E. Charles H. Sykes
    • 1
    Email author
  1. 1.Department of ChemistryTufts UniversityMedfordUSA
  2. 2.Department of PhysicsHarvard UniversityCambridgeUSA
  3. 3.Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations