Skip to main content
Log in

Mechanism of Low Pressure Plasma-Assisted CO2 Hydrogenation Over Ni-USY by Microsecond Time-resolved FTIR Spectroscopy

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Zeolite H-USY doped with nickel (14% wt.) was used as a catalyst in the plasma-assisted CO2 hydrogenation under partial vacuum. CO was found to be the main product of the reaction and it is generated by plasma-assisted CO2 dissociation in the gas phase. The CO2 molecules vibrationally excited by plasma are also adsorbed on metallic nickel as formates which are further transformed into linear carbonyls. These species are then hydrogenated to form methane. Since the catalyst presents a low basic behavior, methane is produced from hydrogenation of linear carbonyls on nickel surface rather than from carbonates species. A detailed mechanism for this reaction assisted by plasma (glow discharge) is proposed using Operando time-resolved FTIR spectroscopic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Westermann A, Azambre B, Bacariza MC, Graça I, Ribeiro MF, Lopes JM, Henriques C (2015) Appl Catal Environ B 174–175, 120–125

    Article  Google Scholar 

  2. Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692–1744

    Article  CAS  Google Scholar 

  3. Raje AP, Davis BH (1997) Catal Today 36, 335–345

    Article  CAS  Google Scholar 

  4. Dry ME (1999) Appl Catal A 189:185–190

    Article  CAS  Google Scholar 

  5. Dry ME (2002) Catal Today 71:227–241

    Article  CAS  Google Scholar 

  6. Fan Z, Sun K, Rui N, Zhao B, Liu C-j. (2015) J Energy Chem 24:655–659

    Article  Google Scholar 

  7. Wanga W, Chu W, Wang N, Yang W, Jiang C (2016) Int J Hydrog Energy 41:967–975

    Article  Google Scholar 

  8. Duyar MS, Ramachandran A, Wang C, Farrauto RJ (2015) J CO2 Util 12:27–33

    Article  CAS  Google Scholar 

  9. Xu J, Lin Q, Su X, Duan H, Geng H, Huang Y (2016) Chin J Chem Eng 24:140–145

    Article  CAS  Google Scholar 

  10. Bahruji H, Bowker M, Hutchings G, Dimitratos N, Wells P, Gibson E, Jones W, Brookes C, Morgan D, Lalev G, Catal J (2016) J Catal. doi:10.1016/j.jcat.2016.03.017

    Google Scholar 

  11. Kattel S, Yan B, Chen JG, Liu P (2016) J Catal. doi:10.1016/j.jcat.2015.12.019

    Google Scholar 

  12. Büchel R, Baiker A, Pratsinis SE (2014) Appl Catal A 477:93–101

    Article  Google Scholar 

  13. Chen Y, Choi S, Thompson LT (2016) J Catal. doi:10.1016/j.jcat.2016.01.016

    Google Scholar 

  14. Hartadi Y, Widmann D, Behm RJ (2016) J Catal 333:238–250

    Article  CAS  Google Scholar 

  15. Lei H, Nie R, Wu G, Hou Z (2015) Fuel 154:161–166

    Article  Google Scholar 

  16. Ussa Aldana PA, Ocampo F, Kobl K, Louis B, Thibault-Starzyk F, Daturi M, Bazin P, Thomas S, Roger AC (2013) Catal Today 215:201–207

    Article  Google Scholar 

  17. Abelló S, Berrueco C, Montané D (2013) Fuel 113:598–609

    Article  Google Scholar 

  18. Kameshima S, Tamura K, Ishibashi Y, Nozaki T (2015) Catal Today 256:67–75

    Article  CAS  Google Scholar 

  19. Nozaki T, Okazaki K (2013) Catal Today 211:29–38

    Article  CAS  Google Scholar 

  20. Neyts EC, Ostrikov K, Sunkara MK, Bogaerts A (2015) Chem Rev 115:13408–13446

    Article  CAS  Google Scholar 

  21. Neyts EC (2016) Plasma Chem Plasma Process 36:185–212

    Article  CAS  Google Scholar 

  22. Neyts EC, Bogaerts A (2014) J Phys D 47:224010

    Article  Google Scholar 

  23. Whitehead JC (2016) J Phys D 49:243001

    Article  Google Scholar 

  24. Ren J, Guo H, Yang J, Qin Z, Lin J, Li Z (2015) Appl Surf Sci 351:504–551

    Article  CAS  Google Scholar 

  25. Beuls A, Swalus C, Jacquemin M, Heyen G, Karelovic A, Ruiz P (2012) Appl Catal B 113–114:2–10

    Article  Google Scholar 

  26. Miao B, Khine Ma SS, Wang X, Su H, Hwa Chan S (2016) Catal Sci Technol 6:4048–4058

    Article  CAS  Google Scholar 

  27. Rönsch S, Schneider J, Matthischke S, Schlüter M, Götz M, Lefebvre J, Prabhakaran P, Bajohr S (2016) Fuel 166:276–296

    Article  Google Scholar 

  28. Avanesian T, Gusmão GS, Christopher P (2016) J Catal. doi:10.1016/j.jcat.2016.03.016

    Google Scholar 

  29. Wang X, Hong Y, Shi H, Szanyi J (2016) J Catal. doi:10.1016/j.jcat.2016.02.001

    Google Scholar 

  30. Weatherbee GD, Bartholomew CH (1982) J Catal 77:460–472

    Article  CAS  Google Scholar 

  31. Tada S, Kikuchi R (2015) Catal Sci Technol 5:3061–3070

    Article  CAS  Google Scholar 

  32. Fujita S.-I., Nakamura M, Doi T, Takezawa N (1993) Appl Catal A 104:87–100

    Article  CAS  Google Scholar 

  33. Garbarino G, Riani P, Magistri L, Busca G (2014) Int J Hydrog Energy 39:11557–11565

    Article  CAS  Google Scholar 

  34. Pan Q, Peng J, Sun T, Wang S, Wang S (2014) Catal Commun 45:74–78

    Article  Google Scholar 

  35. Kim HY, Lee HM, Park J-N (2010) J Phys Chem C 114:7128–7131

    Article  CAS  Google Scholar 

  36. Mei D, Zhu X, Wu C, Ashford B, Williams PT, Tu X (2016) Appl Catal B 182:525–532

    Article  CAS  Google Scholar 

  37. Chen G, Georgieva V, Godfroid T, Snyders R, Delplancke-Ogletree M-P (2016) Appl Catal B 190:115–124

    Article  CAS  Google Scholar 

  38. Rivallan M, Aiello S, Thibault-Starzyk F (2010) Rev Sci Instrum 81:103111

    Article  Google Scholar 

  39. Haq S, Love JG, Sanders HE, King DA (1995) Surf Sci 325:230–242

    Article  CAS  Google Scholar 

  40. Thibault-Starzyk F, Maugé F (2012) Infrared spectroscopy. In: Che M, Védrine J (eds) Characterization of solid materials and heterogeneous catalysts: from structure to surface reactivity, pp 3–48. Wiley, New Jersey

    Google Scholar 

  41. Hadjiivanov KI, Vayssilov GN (2002) Adv Catal 47:307–511

    CAS  Google Scholar 

  42. Hayes RE, Thomas WJ, Hayes KE (1983) Appl Catal 6:653–659

    Article  Google Scholar 

  43. Thibaut-Starzyk F, Maugé F (2012) Infrared spectroscopy in characterization of solid materials and heterogeneous catalysts: from structure to surface reactivity, 1st edn, Che M, Vedrine JC (eds). Wiley, New Jersey

    Google Scholar 

  44. Jungsuttiwong S, Limtrakul J, Truong TN (2005) J Phys Chem B 109:13342–13351

    Article  CAS  Google Scholar 

  45. Fridman A (2008) Plasma Chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  46. Zhang YR, Neyts EC, Bogaerts A (2016) J Phys Chem C 120:25923–25934

    Article  CAS  Google Scholar 

  47. Azzolina Jury F, Polaert I, Estel L, Pierella LB (2013) Appl Catal A Gen 453:92–101

    Article  CAS  Google Scholar 

  48. Zhang YR, Van Laer K, Neyts EC, Bogaerts A (2016) Appl Catal B 185:56–67

    Article  CAS  Google Scholar 

  49. El-Roz M, Lakiss L, Vicente A, Bozhilov KN, Thibault-Starzyk F, Valtchev V (2014) Chem Sci 5:68–80

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Azzolina-Jury.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 362 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzolina-Jury, F., Thibault-Starzyk, F. Mechanism of Low Pressure Plasma-Assisted CO2 Hydrogenation Over Ni-USY by Microsecond Time-resolved FTIR Spectroscopy. Top Catal 60, 1709–1721 (2017). https://doi.org/10.1007/s11244-017-0849-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0849-2

Keywords

Navigation