Topics in Catalysis

, Volume 60, Issue 19–20, pp 1709–1721 | Cite as

Mechanism of Low Pressure Plasma-Assisted CO2 Hydrogenation Over Ni-USY by Microsecond Time-resolved FTIR Spectroscopy

  • Federico Azzolina-Jury
  • Frédéric Thibault-Starzyk
Original Paper

Abstract

Zeolite H-USY doped with nickel (14% wt.) was used as a catalyst in the plasma-assisted CO2 hydrogenation under partial vacuum. CO was found to be the main product of the reaction and it is generated by plasma-assisted CO2 dissociation in the gas phase. The CO2 molecules vibrationally excited by plasma are also adsorbed on metallic nickel as formates which are further transformed into linear carbonyls. These species are then hydrogenated to form methane. Since the catalyst presents a low basic behavior, methane is produced from hydrogenation of linear carbonyls on nickel surface rather than from carbonates species. A detailed mechanism for this reaction assisted by plasma (glow discharge) is proposed using Operando time-resolved FTIR spectroscopic data.

Keywords

Mechanism CO2 hydrogenation Time-resolved FTIR Glow discharge Zeolite USY 

Supplementary material

11244_2017_849_MOESM1_ESM.docx (363 kb)
Supplementary material 1 (DOCX 362 KB)

References

  1. 1.
    Westermann A, Azambre B, Bacariza MC, Graça I, Ribeiro MF, Lopes JM, Henriques C (2015) Appl Catal Environ B 174–175, 120–125CrossRefGoogle Scholar
  2. 2.
    Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692–1744CrossRefGoogle Scholar
  3. 3.
    Raje AP, Davis BH (1997) Catal Today 36, 335–345CrossRefGoogle Scholar
  4. 4.
    Dry ME (1999) Appl Catal A 189:185–190CrossRefGoogle Scholar
  5. 5.
    Dry ME (2002) Catal Today 71:227–241CrossRefGoogle Scholar
  6. 6.
    Fan Z, Sun K, Rui N, Zhao B, Liu C-j. (2015) J Energy Chem 24:655–659CrossRefGoogle Scholar
  7. 7.
    Wanga W, Chu W, Wang N, Yang W, Jiang C (2016) Int J Hydrog Energy 41:967–975CrossRefGoogle Scholar
  8. 8.
    Duyar MS, Ramachandran A, Wang C, Farrauto RJ (2015) J CO2 Util 12:27–33CrossRefGoogle Scholar
  9. 9.
    Xu J, Lin Q, Su X, Duan H, Geng H, Huang Y (2016) Chin J Chem Eng 24:140–145CrossRefGoogle Scholar
  10. 10.
    Bahruji H, Bowker M, Hutchings G, Dimitratos N, Wells P, Gibson E, Jones W, Brookes C, Morgan D, Lalev G, Catal J (2016) J Catal. doi:10.1016/j.jcat.2016.03.017 Google Scholar
  11. 11.
    Kattel S, Yan B, Chen JG, Liu P (2016) J Catal. doi:10.1016/j.jcat.2015.12.019 Google Scholar
  12. 12.
    Büchel R, Baiker A, Pratsinis SE (2014) Appl Catal A 477:93–101CrossRefGoogle Scholar
  13. 13.
    Chen Y, Choi S, Thompson LT (2016) J Catal. doi:10.1016/j.jcat.2016.01.016 Google Scholar
  14. 14.
    Hartadi Y, Widmann D, Behm RJ (2016) J Catal 333:238–250CrossRefGoogle Scholar
  15. 15.
    Lei H, Nie R, Wu G, Hou Z (2015) Fuel 154:161–166CrossRefGoogle Scholar
  16. 16.
    Ussa Aldana PA, Ocampo F, Kobl K, Louis B, Thibault-Starzyk F, Daturi M, Bazin P, Thomas S, Roger AC (2013) Catal Today 215:201–207CrossRefGoogle Scholar
  17. 17.
    Abelló S, Berrueco C, Montané D (2013) Fuel 113:598–609CrossRefGoogle Scholar
  18. 18.
    Kameshima S, Tamura K, Ishibashi Y, Nozaki T (2015) Catal Today 256:67–75CrossRefGoogle Scholar
  19. 19.
    Nozaki T, Okazaki K (2013) Catal Today 211:29–38CrossRefGoogle Scholar
  20. 20.
    Neyts EC, Ostrikov K, Sunkara MK, Bogaerts A (2015) Chem Rev 115:13408–13446CrossRefGoogle Scholar
  21. 21.
    Neyts EC (2016) Plasma Chem Plasma Process 36:185–212CrossRefGoogle Scholar
  22. 22.
    Neyts EC, Bogaerts A (2014) J Phys D 47:224010CrossRefGoogle Scholar
  23. 23.
    Whitehead JC (2016) J Phys D 49:243001CrossRefGoogle Scholar
  24. 24.
    Ren J, Guo H, Yang J, Qin Z, Lin J, Li Z (2015) Appl Surf Sci 351:504–551CrossRefGoogle Scholar
  25. 25.
    Beuls A, Swalus C, Jacquemin M, Heyen G, Karelovic A, Ruiz P (2012) Appl Catal B 113–114:2–10CrossRefGoogle Scholar
  26. 26.
    Miao B, Khine Ma SS, Wang X, Su H, Hwa Chan S (2016) Catal Sci Technol 6:4048–4058CrossRefGoogle Scholar
  27. 27.
    Rönsch S, Schneider J, Matthischke S, Schlüter M, Götz M, Lefebvre J, Prabhakaran P, Bajohr S (2016) Fuel 166:276–296CrossRefGoogle Scholar
  28. 28.
    Avanesian T, Gusmão GS, Christopher P (2016) J Catal. doi:10.1016/j.jcat.2016.03.016 Google Scholar
  29. 29.
    Wang X, Hong Y, Shi H, Szanyi J (2016) J Catal. doi:10.1016/j.jcat.2016.02.001 Google Scholar
  30. 30.
    Weatherbee GD, Bartholomew CH (1982) J Catal 77:460–472CrossRefGoogle Scholar
  31. 31.
    Tada S, Kikuchi R (2015) Catal Sci Technol 5:3061–3070CrossRefGoogle Scholar
  32. 32.
    Fujita S.-I., Nakamura M, Doi T, Takezawa N (1993) Appl Catal A 104:87–100CrossRefGoogle Scholar
  33. 33.
    Garbarino G, Riani P, Magistri L, Busca G (2014) Int J Hydrog Energy 39:11557–11565CrossRefGoogle Scholar
  34. 34.
    Pan Q, Peng J, Sun T, Wang S, Wang S (2014) Catal Commun 45:74–78CrossRefGoogle Scholar
  35. 35.
    Kim HY, Lee HM, Park J-N (2010) J Phys Chem C 114:7128–7131CrossRefGoogle Scholar
  36. 36.
    Mei D, Zhu X, Wu C, Ashford B, Williams PT, Tu X (2016) Appl Catal B 182:525–532CrossRefGoogle Scholar
  37. 37.
    Chen G, Georgieva V, Godfroid T, Snyders R, Delplancke-Ogletree M-P (2016) Appl Catal B 190:115–124CrossRefGoogle Scholar
  38. 38.
    Rivallan M, Aiello S, Thibault-Starzyk F (2010) Rev Sci Instrum 81:103111CrossRefGoogle Scholar
  39. 39.
    Haq S, Love JG, Sanders HE, King DA (1995) Surf Sci 325:230–242CrossRefGoogle Scholar
  40. 40.
    Thibault-Starzyk F, Maugé F (2012) Infrared spectroscopy. In: Che M, Védrine J (eds) Characterization of solid materials and heterogeneous catalysts: from structure to surface reactivity, pp 3–48. Wiley, New JerseyGoogle Scholar
  41. 41.
    Hadjiivanov KI, Vayssilov GN (2002) Adv Catal 47:307–511Google Scholar
  42. 42.
    Hayes RE, Thomas WJ, Hayes KE (1983) Appl Catal 6:653–659CrossRefGoogle Scholar
  43. 43.
    Thibaut-Starzyk F, Maugé F (2012) Infrared spectroscopy in characterization of solid materials and heterogeneous catalysts: from structure to surface reactivity, 1st edn, Che M, Vedrine JC (eds). Wiley, New JerseyGoogle Scholar
  44. 44.
    Jungsuttiwong S, Limtrakul J, Truong TN (2005) J Phys Chem B 109:13342–13351CrossRefGoogle Scholar
  45. 45.
    Fridman A (2008) Plasma Chemistry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  46. 46.
    Zhang YR, Neyts EC, Bogaerts A (2016) J Phys Chem C 120:25923–25934CrossRefGoogle Scholar
  47. 47.
    Azzolina Jury F, Polaert I, Estel L, Pierella LB (2013) Appl Catal A Gen 453:92–101CrossRefGoogle Scholar
  48. 48.
    Zhang YR, Van Laer K, Neyts EC, Bogaerts A (2016) Appl Catal B 185:56–67CrossRefGoogle Scholar
  49. 49.
    El-Roz M, Lakiss L, Vicente A, Bozhilov KN, Thibault-Starzyk F, Valtchev V (2014) Chem Sci 5:68–80CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Federico Azzolina-Jury
    • 1
  • Frédéric Thibault-Starzyk
    • 1
  1. 1.Laboratoire Catalyse et Spectrochimie (LCS)CNRS-ENSICAEN-Université de CaenCaenFrance

Personalised recommendations