Advertisement

Topics in Catalysis

, Volume 60, Issue 19–20, pp 1682–1697 | Cite as

On the Correlation of Structure and Catalytic Performance of VPO Catalysts

  • Sebastian Böcklein
  • Gerhard MestlEmail author
  • Sabine Veronika Auras
  • Joost Wintterlin
Original Paper
  • 259 Downloads

Abstract

Correlations are reported between structure and performance of current, state-of the art, industrial maleic anhydride production catalysts. Characterization was done with fully equilibrated catalysts to achieve reliable correlations of structure and activity. The kinetic analysis of the investigated VPO catalysts revealed differences in activities but comparable activation energies indicating active on-surface sites of similar nature but of different concentrations. One major crystalline component, VPP, and six minority compounds were identified, hence, VPP alone cannot be reasonably correlated with catalytic activity. XPS revealed elevated V5+ concentrations, differences in the P/V ratios, and the P surface content correlates negatively with catalytic activity. Hence, all crystalline phases must have noncrystalline, surface-layers containing V5+ species and varying P amounts. Deconvolution of Raman spectra identified four major vanadyl phosphate species of changing concentrations. One species, αI-VOPO4, was absent from the XRD patterns of the two most active catalysts, indicating that it is noncrystalline and, hence, integral part of the amorphous surface layers. These spectral/structural differences correlated with catalyst activity. The most active catalysts contain relatively more crystalline VPP, in accordance with literature. These active catalysts also have a higher amount of the amorphous V5+ surface species, α-VOPO4. All other V5+ species detected, δ- and g-VOPO4 are crystalline and negatively affect catalyst activity. Again in agreement with literature, the surface P/V ratio negatively correlates with catalyst activity, while the reported correlation of the V5+/V4+ ratio with activity was not observed. The multi-method approach chosen here, always strongly favored by H. Knözinger, generated a detailed picture of the compositional differences between the bulk and surface regions of the investigated catalysts and revealed how these differences correlate with catalytic performance.

Keywords

Vanadyl pyrophosphate Vanadyl phosphates Maleic anhydride Phase composition Surface composition catalytic performance 

References

  1. 1.
    Freerks M, Suda M (1974) Production of maleic anhydride by catalytic oxidation of saturated aliphatic hydrocarbons. US Patent 3832359 AGoogle Scholar
  2. 2.
    Schneider R (1975) Catalyst for n-butane oxidation to maleic anhydride. US Patent 3864280 AGoogle Scholar
  3. 3.
    Trifiro F, Grasselli R (2014) Top Catal 57:1188–1195CrossRefGoogle Scholar
  4. 4.
    Coulston GW, Bare SR, Kung H, Birkeland K, Bethke GK, Harlow R, Herron N, Lee PL (1997) Science 275:191–193CrossRefGoogle Scholar
  5. 5.
    Trivedi B (2013) Maleic anhydride. Springer, New YorkGoogle Scholar
  6. 6.
    Haase H (1972) Chem Ing Tech 44:80–86CrossRefGoogle Scholar
  7. 7.
    Chieregato A, Nieto JML, Cavani F (2015) Coord Chem Rev 301–302, 3–23CrossRefGoogle Scholar
  8. 8.
    Govender N, Friedrich HB, van Vuuren M (2004) J Catal Today 97:315–324CrossRefGoogle Scholar
  9. 9.
    Bartholomew CH, Farrauto RJ (2011) Fundamentals of industrial catalytic processes. Wiley, HobokenGoogle Scholar
  10. 10.
    Abon M, Volta J-C (1997) Appl Catal A 157:173–193CrossRefGoogle Scholar
  11. 11.
    Busca G, Centi G, Trifiro F, Lorenzelli V (1986) J Phys Chem 90:1337–1344CrossRefGoogle Scholar
  12. 12.
    Zhanglin Y, Forissier M, Sneeden R, Vedrine J, Volta J (1994) J Catal 145:256–266CrossRefGoogle Scholar
  13. 13.
    Zhanglin Y, Forissier M, Vedrine J, Volta J (1994) J Catal 145:267–275CrossRefGoogle Scholar
  14. 14.
    Xue Z-Y, Schrader GL (1999) J Phys Chem B 103:9459–9467CrossRefGoogle Scholar
  15. 15.
    Sananes M, Hutchings G, Volta J (1995) J Catal 154:253–260CrossRefGoogle Scholar
  16. 16.
    Cornaglia L, Caspani C, Lombardo E (1991) Appl Catal 74:15–27CrossRefGoogle Scholar
  17. 17.
    Sola G, Pierini B, Petunchi J (1992) Catal Today 15:537–545CrossRefGoogle Scholar
  18. 18.
    Trifiro F (1993) Catal Today 16:91–98CrossRefGoogle Scholar
  19. 19.
    Centi G, Trifiro E, Busca G, Ebner J, Gleaves J (1988) In: Proceedings of the 9th International Congress on Catalysis, p 751Google Scholar
  20. 20.
    Hutchings GJ, Desmartin-Chomel A, Olier R, Volta J-C (1994) Nature 368:41–45CrossRefGoogle Scholar
  21. 21.
    Agaskar P, De Caul L, Grasselli R (1994) Catal Lett 23:339–351CrossRefGoogle Scholar
  22. 22.
    Guliants VV, Holmes SJ (2001) Mol Catal A 175:227–239CrossRefGoogle Scholar
  23. 23.
    Ballarini N, Cavani F, Cortelli C, Ligi S, Pierelli F, Trifiro F, Fumagalli C, Mazzoni G, Monti T (2006) Top Catal 38:147–156CrossRefGoogle Scholar
  24. 24.
    Gai PL, Kourtakis K, Science (1995) 267:661–663CrossRefGoogle Scholar
  25. 25.
    Nguyen P, Sleight A, Roberts N, Warren W (1996) J Solid State Chem 122:259–265CrossRefGoogle Scholar
  26. 26.
    Gai PL, Kourtakis K, Coulson DR, Sonnichsen GC (1997) J Phys Chem B 101:9916–9925CrossRefGoogle Scholar
  27. 27.
    Gai P (1999) Top Catal 8:97–113CrossRefGoogle Scholar
  28. 28.
    Albonetti S, Cavani F, Ligi S, Pierelli F, Trifiro F, Ghel F, Mazzoni G (2000) Studies in surface science and catalysis. In: Gaigneaux E, Vos DD, Grange P, Jacobs P, Martens J, Ruiz P, Poncelet G (eds) Scientific bases for the preparation of heterogeneous catalysts, vol 143. Elsevier, Amsterdam, pp 963–973CrossRefGoogle Scholar
  29. 29.
    Albonetti S, Cavani F, Trifiro F, Venturoli P, Calestani G, Granados ML, Fierro J (1996) J Catal 160:52–64CrossRefGoogle Scholar
  30. 30.
    Ben Abdelouahab F, Olier R, Guilhaume N, Lefebvre F, Volta J (1992) J Catal 134:151–167CrossRefGoogle Scholar
  31. 31.
    Ben Abdelouahab F, Olier R, Ziyad M, Volta J (1995) J Catal 157:687–697CrossRefGoogle Scholar
  32. 32.
    Wachs IE, Jehng J-M, Deo G, Weckhuysen BM, Guliants VV, Benziger JB (1996) Catal Today 32:47–55CrossRefGoogle Scholar
  33. 33.
    Hu H, Wachs IE (1995) J Phys Chem 99:10911–10922CrossRefGoogle Scholar
  34. 34.
    Centi G (1993) Catal Today 16:5–26CrossRefGoogle Scholar
  35. 35.
    Centi G, Trifiro F, Ebner JR, Franchetti VM (1988) Chem Rev 88:55–80CrossRefGoogle Scholar
  36. 36.
    Contractor R, Sleight A (1988) Catal Today 3:175–184CrossRefGoogle Scholar
  37. 37.
    Arpentinier P, Cavani F, Tri_r_o F (2001) The technology of catalytic oxidations. Editions Technip, ParisGoogle Scholar
  38. 38.
    Guliants VV, Benziger J, Sundaresan S, Wachs I, Jehng J-M, Roberts J (1996) Catal Today 28:275–295CrossRefGoogle Scholar
  39. 39.
    Guliants VV, Benziger J, Sundaresan S, Yao N, Wachs I (1995) Catal Lett 32:379–386CrossRefGoogle Scholar
  40. 40.
    Guliants VV, Holmes S, Benziger J, Heaney P, Yates D, Wachs IJ (2001) Mol Catal A 172:265–276CrossRefGoogle Scholar
  41. 41.
    Busca G, Cavani F, Centi G, Trifiro F (1986) J Catal 99:400–414CrossRefGoogle Scholar
  42. 42.
    Azuma M, Saito T, Fujishiro Y, Hiroi Z, Takano M, Izumi F, Kamiyama T, Ikeda T, Narumi Y, Kindo K (1999) Phys Rev B 60:10145–10149CrossRefGoogle Scholar
  43. 43.
    Hiroi Z, Azuma M, Fujishiro Y, Saito T, Takano M, Izumi F, Kamiyama T, Ikeda T (1999) J Solid State Chem 146:369–379CrossRefGoogle Scholar
  44. 44.
    Koo H-J, Whangbo M-H (2000) Inorg Chem 39:3599–3604CrossRefGoogle Scholar
  45. 45.
    Leonowicz M, Johnson JW, Brody J Jr, Newsam HSJ (1985) J Solid State Chem 56:370–378CrossRefGoogle Scholar
  46. 46.
    Amoros P, Ibanez R, Martinez-Tamayo E, Beltran-Porter A, Beltran-Porter D, Villeneuve G (1989) Mater Res Bull 24:1347–1360CrossRefGoogle Scholar
  47. 47.
    Worzala H, Goetze T, Fratzky D, Meisel M (1998) Acta Crystallogr A 54:283–285CrossRefGoogle Scholar
  48. 48.
    Le Bail A, Ferey G, Amoros P, Beltran-Porter D (1989) Eur J Solid State Inorg Chem 26:419–426Google Scholar
  49. 49.
    Le Bail A, Ferey G, Amoros P, Beltran-Porter D, Villeneuve G (1989) J Solid State Chem 79:169–176CrossRefGoogle Scholar
  50. 50.
    Luciani S (2009) Structural changes and dynamic behaviour of vanadium oxide-based catalysts for gas-phase selective oxidations. Ph.D. thesis, Universitá di BolognaGoogle Scholar
  51. 51.
    Gleaves JT, Ebner JR, Kuechler TC (1988) Cat Rev 30:49–116CrossRefGoogle Scholar
  52. 52.
    Cavani F, Ligi S, Monti T, Pierelli F, Trifiro F, Albonetti S, Mazzoni G (2000) Catal Today 61:203–210CrossRefGoogle Scholar
  53. 53.
    Abon M, Bere K, Tuel A, Delichere P (1995) J Catal 156:28–36CrossRefGoogle Scholar
  54. 54.
    Hutchings GJ, Kiely CJ, Sananes-Schulz MT, Burrows A, Volta JC (1998) Catal Today 40:273–286CrossRefGoogle Scholar
  55. 55.
    Ait-Lachgar K, Tuel A, Brun M, Herrmann J, Kra_t J, Martin J, Volta J, Abon M (1998) J Catal 177:224–230CrossRefGoogle Scholar
  56. 56.
    Ben Abdelouahab G, Volta J, Olier R (1994) J Catal 148:334–340CrossRefGoogle Scholar
  57. 57.
    Hodnett B (1987) Catal Today 1:475–476CrossRefGoogle Scholar
  58. 58.
    Vedrine JC, Millet JMM, Volta JC (1989) Faraday Discuss Chem Soc 87:207–213CrossRefGoogle Scholar
  59. 59.
    Li J, Lashier M, Schrader G, Gerstein BC (1991) Appl Catal 73:83–95CrossRefGoogle Scholar
  60. 60.
    Guilhaume N, Roullet M, Pajonk G, Grzybowska B, Volta J (1992) Studies in surface science and catalysis. In: Ruiz P, Delmon B (eds) New developments in selective oxidation by heterogeneous catalysis, vol 72. Elsevier, New York, pp 255–265CrossRefGoogle Scholar
  61. 61.
    Girgsdies F, Ressler T, Schlögl R, Dong W-S, Budroni G, Conte M, Bartley JK, Hutchings GJ, Wolf G-U, Schneider M (2006) New contributions to the structural chemistry of vanadyl orthophosphate VOPO4, poster presented at XXXIX. Jahrestreffen Deutscher KatalytikerGoogle Scholar
  62. 62.
    Bordes E, Johnson J, Raminosona A, Courtine P (1985) Mater Sci Monogr B 28:887–892Google Scholar
  63. 63.
    Bordes E (1987) Catal Today 1:499–526CrossRefGoogle Scholar
  64. 64.
    Moser T, Schrader GJ (1987) Catal 104:99–108CrossRefGoogle Scholar
  65. 65.
    Lashier M, Moser T, Schrader G (1990) Studies in surface science and catalysis. In: Centi G, Trifiro F (eds) New developments in selective oxidation, vol 55. Elsevier, New York, pp 573–583CrossRefGoogle Scholar
  66. 66.
    Bordes E, Courtine PJ (1985) Chem Soc Chem Commun 294–296Google Scholar
  67. 67.
    Haber J, Kozlowska A, Koz lowski R (1986) J Catal 102:52–63CrossRefGoogle Scholar
  68. 68.
    Koranne M, Goodwin J, Marcelin G (1994) J Catal 148:369–377CrossRefGoogle Scholar
  69. 69.
    Gruene P, Wolfram T, Pelzer K, Schlögl R, Trunschke A (2010) Catal Today 157:137–142CrossRefGoogle Scholar
  70. 70.
    Gao X, Ruiz P, Xin Q, Guo X, Delmon B (1994) J Catal 148:56–67CrossRefGoogle Scholar
  71. 71.
    Tessier L, Bordes E, Gubelmann-Bonneau M (1995) Catal Today 24:335–340CrossRefGoogle Scholar
  72. 72.
    Wachs IE, Weckhuysen BM (1997) Appl Catal A 157:67–90CrossRefGoogle Scholar
  73. 73.
    Katzumoto K, Marquis DM (1979) Method of preparing v(IV)phosphate composition with high intrinsic surface area. Chevron, US4132670Google Scholar
  74. 74.
    Coelho AA (2007) TOPAS—academic version 4.1Google Scholar
  75. 75.
    Villars P (2015) K. C. Pearson’s crystal data: crystal structure database for inorganic compounds. VPP: 1812726, VHP: 1811410, αI-VOPO4: 1100582, VO(PO3)3, p 378770Google Scholar
  76. 76.
    ICSD, Inorganic crystal structure database, Karlsruhe FIZ, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen. γ-VOPO4: 415213, δ-VOPO4: 420073, V(PO3)3: 306460Google Scholar
  77. 77.
    Igor Pro - version 6.3.7.2, 2014Google Scholar
  78. 78.
    Cornaglia L, Lombardo E (1995) Appl Catal A 127:125–138CrossRefGoogle Scholar
  79. 79.
    Biesinger MC, Lau LW, Gerson AR, Smart RS (2010) Appl Surf Sci 257:887–898CrossRefGoogle Scholar
  80. 80.
    Weiguny J, Storck S, Duda M, Dobner C (2002) Catalyst-precursor for the production of maleic acid anhydride and method for the production thereof, BASF; WO03078058 (A1)Google Scholar
  81. 81.
    Volta JCCR (2000) Acad Sci Ser IIc 3:717–723Google Scholar
  82. 82.
    Coulston G, Thompson E, Herron N (1996) J Catal 163:122–129CrossRefGoogle Scholar
  83. 83.
    Waugh K, Taufiq-Yap Y-H (2003) Catal Today 81:215–225CrossRefGoogle Scholar
  84. 84.
    Delmon B (2006) Catal Today 117:69–74CrossRefGoogle Scholar
  85. 85.
    Kleimenov E, Bluhm H, Hävecker M, Knop-Gericke A, Pestryakov A, Teschner D, Lopez-Sanchez J, Bartley J, Hutchings G, Schögl R (2005) Surf Sci 575:181–188CrossRefGoogle Scholar
  86. 86.
    Silversmit G, Depla D, Poelman H, Marin GB, Gryse RD (2004) J Electron Spectrosc Relat Phenom 135:167–175CrossRefGoogle Scholar
  87. 87.
    Bond GC, Flamerz S (1989) Appl Catal 46:89–102CrossRefGoogle Scholar
  88. 88.
    Andersson A, Andersson SLT (1985) Solid state chemistry in catalysis. American Chemical Society, Washington, Chap. 9, pp 121–142CrossRefGoogle Scholar
  89. 89.
    Shimoda T, Okuhara T, Misono M (1985) Bull Chem Soc Jpn 58:2163–2171CrossRefGoogle Scholar
  90. 90.
    Batis N, Batis H, Ghorbel A, Vedrine J, Volta J (1991) J Catal 128:248–263CrossRefGoogle Scholar
  91. 91.
    Garbassi F, Bart J, Tassinari R, Vlaic G, Lagarde P (1986) J Catal 98:317–325CrossRefGoogle Scholar
  92. 92.
    Matsuura I (1984) In: Proceedings of the 8th international congress on catalysis, Berlin, p 473Google Scholar
  93. 93.
    Conte M, Budroni G, Bartley JK, Taylor SH, Carley AF, Schmidt A, Murphy DM, Girgsdies F, Ressler T, Schlögl R, Hutchings G (2006) J Sci 313:1270–1273CrossRefGoogle Scholar
  94. 94.
    Hutchings GJ, Lopez-Sanchez J, Bartley JK, Webster JM, Burrows A, Kiely CJ, Carley AF, Rhodes C, Hävecker M, Knop-Gericke A, Mayer RW, Schlögl R, Volta JC, Poliakov M (2002) J Catal 208:197–210CrossRefGoogle Scholar
  95. 95.
    Knözinger H (1996) Catal Today 32:71–80CrossRefGoogle Scholar
  96. 96.
    Twu J, Dutta PK (1990) J Catal 124:503–510CrossRefGoogle Scholar
  97. 97.
    Griffith WP (1967) J Chem Soc A 905–908Google Scholar
  98. 98.
    Ebner J, Thompson M (1993) Catal Today 16:51–60CrossRefGoogle Scholar
  99. 99.
    Diedenhoven J, Reitzmann A, Mestl G, Turek T (2012) Chem Ing Tech 84:517–523CrossRefGoogle Scholar
  100. 100.
    Lesser D, Mestl G, Turek T (2016) Appl Catal A 510:1–10CrossRefGoogle Scholar
  101. 101.
    Mestl G, Lesser D, Turek T (2016) Top Catal 59:1533–1544CrossRefGoogle Scholar
  102. 102.
    Lesser D, Mestl G, Turek T (2017) Chem Eng Sci 172:559–570CrossRefGoogle Scholar
  103. 103.
    Cavani F, Luciani S, Esposti ED, Cortelli C, Leanza R (2010) Chem Eur J 16:1646–1655CrossRefGoogle Scholar
  104. 104.
    Cavani F, De Santi D, Luciani S, Löfberg A, Bordes-Richard E, Cortelli C, Leanza R (2010) Appl Catal A 376:66–75CrossRefGoogle Scholar
  105. 105.
    Girgsdies F, Schneider M, Brückner A, Ressler T, Schlögl R (2009) Solid State Sci 11:1258–1264CrossRefGoogle Scholar
  106. 106.
    Kiely CJ, Burrows A, Hutchings GJ, Bere KE, Volta J-C, Tuel A, Abon M (1996) Faraday Discuss 105:103–118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Sebastian Böcklein
    • 1
  • Gerhard Mestl
    • 1
    Email author
  • Sabine Veronika Auras
    • 2
  • Joost Wintterlin
    • 2
  1. 1.Clariant AGHeufeldGermany
  2. 2.Department Chemie and CeNSLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations