Skip to main content

Hydrogen Production from Aqueous Solutions of Glycerol on TiO2/Ru-MCM-41 Photocatalysts Using Solar Light

Abstract

Ru-MCM-41 molecular sieves were prepared (Si/Ru atomic ratio = 50 or 100) by a hydrothermal method and impregnated with TiO2. The materials were characterized by XRD, N2 physisorption, DRS, SEM and TEM. Their potential application to hydrogen production by photolysis of water using solar light was tested in a batch reactor using mixtures of water and glycerol (0–6.85 mol L−1) at pH varying from 1 to 11. The photocatalytic efficiency under simultaneous UV (0.05 μW cm−2) and visible light (90.07 W m−2) irradiation was compared to the activity of TiO2/MCM-41 (i.e., no Ru incorporated) and commercial Degussa TiO2 P25. The most active material was 20%TiO2/Ru-MCM-41(100) whose performance (220.6 µmol gTi −1 H2) was approximately 47 times higher than TiO2 P25. Characterization results showed the deposition of TiO2 and revealed the formation of RuO2 on the surface. Hydrogen generation was improved due to higher charge separation at the TiO2/RuO2 heterojunction and to the enhancement of visible light absorption caused by surface plasmon resonance (SPR). Hydrogen production increased with glycerol concentration, tending to stabilize around 40.3 µmol h−1 gTi −1 above 4 mol L−1 of glycerol. Hydrogen generation reached its maximum at extreme values of pH (1 and 11).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11(3):401–425

    CAS  Article  Google Scholar 

  2. Patsoura A, Kondarides DI, Verykios XE (2007) Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catal Today 124(3–4):94–102

    CAS  Article  Google Scholar 

  3. Strataki N, Bekiari V, Kondarides DI, Lianos P (2007) Hydrogen production by photocatalytic alcohol reforming employing highly efficient nanocrystalline titania films. Appl Catal B 77(1–2):184–189

    CAS  Article  Google Scholar 

  4. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocalytic hydrogen generation. Chem Rev 110:6503–6570

    CAS  Article  Google Scholar 

  5. Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851–7861

    CAS  Article  Google Scholar 

  6. Ni M, Leung MKH, Leung DYC, Sumathy KA (2007) review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11(3):401–425

    CAS  Article  Google Scholar 

  7. Galinska A, Walendziewski J (2005) Photocatalytic water splitting over Pt–TiO2 in the presence of sacrificial reagents. Energ Fuel 19:1143–1147

    CAS  Article  Google Scholar 

  8. Wu N-L, Lee M-S (2004) Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. Int J Hydrog Energy 29:1601–1605

    CAS  Article  Google Scholar 

  9. Linsebigler AL, Lu G, Yates JTJ (1995) Photocatalysis on TiO2 Surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    CAS  Article  Google Scholar 

  10. Leung DY, Fu X, Wang C, Ni M, Leung MK, Wang X, Fu X (2010) Hydrogen production over titania based photocatalysts. ChemSusChem 3:681–694

    CAS  Article  Google Scholar 

  11. Nada AA, Barakat MH, Hamed HA, Mohamed NR, Veziroglu TN (2005) Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts. Int J Hydrog Energy 30(7):687–691

    CAS  Article  Google Scholar 

  12. Xuan J, Leung MKH, Leung DYC, Ni M (2009) A review of biomass-derived fuel processors for fuel cell systems. Renew Sustain Energy Rev 13:1301–1313

    CAS  Article  Google Scholar 

  13. Daskalaki VM, Kondarides DI (2009) Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions. Catal Today 144:75–80

    CAS  Article  Google Scholar 

  14. Liu R, Yoshida H, Fujita S, Arai M (2014) Photocatalytic hydrogen production from glycerol and water with NiOx/TiO2 catalysts. Appl Catal B 144:41–45

    CAS  Article  Google Scholar 

  15. Fujita S, Kawamori H, Honda D, Yoshida H, Arai M (2016) Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO2 catalysts: effects of preparation and reaction conditions. Appl Catal B 181:818–824

    CAS  Article  Google Scholar 

  16. Marques FC, Canela MC, Stumbo AM (2008) Use of TiO2/Cr-MCM-41 molecular sieve irradiated with visible light for the degradation of thiophene in the gas phase. Catal Today 133:594–599

    Article  Google Scholar 

  17. Liu S-H, Wang PH (2002) Photocatalytic generation of hydrogen on Zr-MCM-41. Int J Hydrog Energy 27:859–862

  18. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712

    CAS  Article  Google Scholar 

  19. Davydov L, Reddy EP, France P, Smirniotis PG (2001) Transition-metal-substituted titania-loaded MCM-41 as photocatalysts for the degradation of aqueous organics in visible light. J Catal 203:157–167

    CAS  Article  Google Scholar 

  20. Yuan Y-P, Ruan L-W, Barber J, Loo SCJ, Xue C (2014) Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy. Environ Sci 7:3934–3951

    CAS  Google Scholar 

  21. Dahl M, Liu Y, Yin Y (2014) Composite titanium dioxide nanomaterials. Chem Rev 114:9853–9889

    CAS  Article  Google Scholar 

  22. Kubacka A, Fernández-García M, Colón G (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112(3):1555–1614

    CAS  Article  Google Scholar 

  23. Blasco T, Corma A, Navaro MT, Pariente JP (1995) Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures. J Catal 156:65–74

    CAS  Article  Google Scholar 

  24. Tauc J (1974) Amorphous and liquid semiconductors. Plenum, New York

    Book  Google Scholar 

  25. Babu VJ, Kumar MK, Nair AS, Kheng TL, Allakhverdiev SI, Ramakrishna S (2012) Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures. Int J Hydrog Energy 37:897–904

    Article  Google Scholar 

  26. Sing KSW, Everett DH, Haul R (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984). Pure Appl Chem 57(4):603–619

    CAS  Article  Google Scholar 

  27. Uddin MT, Nicolas Y, Olivier C, Toupance T, Müller MM, Kleebe HJ, Rachut K, Ziegler J, Klein A, Jaegermann W (2013) Preparation of RuO2/TiO2 mesoporous heterostructures and rationalization of their enhanced photocatalytic properties by band alignment investigations. J Phys Chem C 117:22098–22110

    CAS  Article  Google Scholar 

  28. Khorasani-Motlagh M, Noroozifar M, Yousefi M (2011)A simple new method to synthesize nanocrystalline ruthenium dioxide in the presence of octanoic acid as organic surfactant. Int J Nanosci Ser 7(4):167–172

    Google Scholar 

  29. Jae J, Zheng W, Karim AM, Guo W, Lobo RF, Vlachos DG (2014) The role of Ru and RuO2 in the catalytic transfer hydrogenation of 5-hydroxymethylfurfural for the production of 2,5-dimethylfuran. ChemCatChem 6:848–856

    CAS  Article  Google Scholar 

  30. Carballo JMG, Finocchio E, García S, Rojas S, Ojeda M, Busca J, Fierro JLG (2011) Support effects on the structure and performance of ruthenium catalysts for the Fischer–Tropsch synthesis. Catal Sci Technol 1:1013–1023

    Article  Google Scholar 

  31. Dutta PK, Vaidyalingam AS (2003) Zeolite-supported ruthenium oxide catalysts for photochemical reduction of water to hydrogen. Microporous Mesoporous Mater 62:107–120

    CAS  Article  Google Scholar 

  32. Bang S, Lee S, Park T, Ko Y, Shin S, Yim S-Y, Seo H, Jeon H (2012) Dual optical functionality of local surface plasmon resonance for RuO2 nanoparticle-ZnO nanorod hybrids grown by atomic layer deposition. J Mater Chem 22:14141–14148

    CAS  Article  Google Scholar 

  33. Camblor MA, Corma A, Martinez A (1992) Synthesis of a titanium silicoaluminate isomorphous to zeolite-beta and its application as a catalyst for the selective oxidation of large organic-molecules. Chem Commun 8:589–590

    Article  Google Scholar 

  34. Patake VD, Lokhande CD (2008) Chemical synthesis of nano-porous ruthenium oxide (RuO2) thin films for supercapacitor application. Appl Surf Sci 254:2820–2824

    CAS  Article  Google Scholar 

  35. Ismail AA, Robben L, Bahnemann DW (2011) Study of the efficiency of UV and visible-light photocatalytic oxidation of methanol on mesoporous RuO2–TiO2 nanocomposites. ChemPhysChem 12:982–991

    CAS  Article  Google Scholar 

  36. Uddin MT, Babot O, Thomas L, Olivier C, Redaelli M, D’Arienzo M, Morazzoni F, Jaegermann W, Rockstroh N, Junge H, Toupance T (2015) New insights into the photocatalytic properties of RuO2/TiO2 mesoporous heterostructures for hydrogen production and organic pollutant photodecomposition. J Phys Chem C 119:7006–7015

    CAS  Article  Google Scholar 

  37. Nguyen-Phan T-D, Luo S, Vovchok D, Llorca J, Graciani J, Sanz JF, Sallis S, Xu W, Bai J, Piper LFJ, Polyansky DE, Fujita E, Senanayake SD, Stacchiola DJ, Rodriguez JA (2016) Visible light-driven H2 production over highly dispersed Ruthenia on rutile TiO2 nanorods. ACS Catal 6:407–417

    CAS  Article  Google Scholar 

  38. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130:(5):1676–1680

    CAS  Article  Google Scholar 

  39. Watanabe K, Menzel D, Nilius N, Freund HJ (2006) Photochemistry on metal nanoparticles. Chem Rev 106:4301–4320

    CAS  Article  Google Scholar 

  40. Wu F, Hu X, Fan J, Liu E, Sun T, Kang L, Hou W, Zhu C, Liu H (2013) Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics 8:501–508

    CAS  Article  Google Scholar 

  41. Jiang J, Li H, Zhang L (2012) New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis. Chem-Eur J 18:6360–6369

    CAS  Article  Google Scholar 

  42. Uddin MT, Nicolas Y, Olivier C, Servant L, Toupance T, Li S, Klein A, Jaegermann W (2015) Improved photocatalytic activity in RuO2–ZnO nanoparticulate heterostructures due to inhomogeneous space charge effects. Phys Chem Chem Phys 17:5090–5102

    CAS  Article  Google Scholar 

  43. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244

    CAS  Article  Google Scholar 

  44. Xu D, Yang S, Jin Y, Chen M, Fan W, Luo B, Shi W (2015) Ag-decorated ATaO3 (A = K, Na) nanocube plasmonic photocatalysts with enhanced photocatalytic water-splitting properties. Langmuir 31:9694–9699

    CAS  Article  Google Scholar 

  45. Lyubina TP, Markovskaya DV, Kozlova EA, Parmon VN (2013) Photocatalytic hydrogen evolution from aqueous solutions of glycerol under visible light irradiation. Int J Hydrog Energy 38:14172–14179

    CAS  Article  Google Scholar 

  46. Rao H, Yu W-Q, Zheng W-Q, Bonin J, Fan Y-T, Hou H-W (2016) Highly efficient photocatalytic hydrogen evolution from nickel quinolinethiolate complexes under visible light irradiation. J Power Sources 324:253–260

    CAS  Article  Google Scholar 

  47. Lee G-J, Anandan MS, Masten SJ, Wu JJ (2016) Photocatalytic hydrogen evolution from water splitting using Cu doped ZnS microspheres under visible light irradiation. Renew Energy 89:18–26

    CAS  Article  Google Scholar 

  48. Clausen DN, Takashima K (2007) Efeitos dos parâmetros operacionais na fotodegradação do azo corante direct red 23 na interface dióxido de titânio/água. Quim Nova 30(8):1896–1899

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of Brazilian funding agencies FAPERJ (Proc. E-26/010.002631/2014), FAPES (Proc. 67677258) and CAPES. The authors also thank FOTOAIR group from CIEMAT-SPAIN for PCZ analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabielle C. Marques.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marques, F.C., Canela, M.C. & Stumbo, A.M. Hydrogen Production from Aqueous Solutions of Glycerol on TiO2/Ru-MCM-41 Photocatalysts Using Solar Light. Top Catal 60, 1196–1209 (2017). https://doi.org/10.1007/s11244-017-0803-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0803-3

Keywords

  • Hydrogen
  • Photocatalysis
  • MCM-41
  • Surface plasmon resonance
  • Sunlight
  • Glycerol