Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11(3):401–425
CAS
Article
Google Scholar
Patsoura A, Kondarides DI, Verykios XE (2007) Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catal Today 124(3–4):94–102
CAS
Article
Google Scholar
Strataki N, Bekiari V, Kondarides DI, Lianos P (2007) Hydrogen production by photocatalytic alcohol reforming employing highly efficient nanocrystalline titania films. Appl Catal B 77(1–2):184–189
CAS
Article
Google Scholar
Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocalytic hydrogen generation. Chem Rev 110:6503–6570
CAS
Article
Google Scholar
Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851–7861
CAS
Article
Google Scholar
Ni M, Leung MKH, Leung DYC, Sumathy KA (2007) review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11(3):401–425
CAS
Article
Google Scholar
Galinska A, Walendziewski J (2005) Photocatalytic water splitting over Pt–TiO2 in the presence of sacrificial reagents. Energ Fuel 19:1143–1147
CAS
Article
Google Scholar
Wu N-L, Lee M-S (2004) Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. Int J Hydrog Energy 29:1601–1605
CAS
Article
Google Scholar
Linsebigler AL, Lu G, Yates JTJ (1995) Photocatalysis on TiO2 Surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758
CAS
Article
Google Scholar
Leung DY, Fu X, Wang C, Ni M, Leung MK, Wang X, Fu X (2010) Hydrogen production over titania based photocatalysts. ChemSusChem 3:681–694
CAS
Article
Google Scholar
Nada AA, Barakat MH, Hamed HA, Mohamed NR, Veziroglu TN (2005) Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts. Int J Hydrog Energy 30(7):687–691
CAS
Article
Google Scholar
Xuan J, Leung MKH, Leung DYC, Ni M (2009) A review of biomass-derived fuel processors for fuel cell systems. Renew Sustain Energy Rev 13:1301–1313
CAS
Article
Google Scholar
Daskalaki VM, Kondarides DI (2009) Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions. Catal Today 144:75–80
CAS
Article
Google Scholar
Liu R, Yoshida H, Fujita S, Arai M (2014) Photocatalytic hydrogen production from glycerol and water with NiOx/TiO2 catalysts. Appl Catal B 144:41–45
CAS
Article
Google Scholar
Fujita S, Kawamori H, Honda D, Yoshida H, Arai M (2016) Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO2 catalysts: effects of preparation and reaction conditions. Appl Catal B 181:818–824
CAS
Article
Google Scholar
Marques FC, Canela MC, Stumbo AM (2008) Use of TiO2/Cr-MCM-41 molecular sieve irradiated with visible light for the degradation of thiophene in the gas phase. Catal Today 133:594–599
Article
Google Scholar
Liu S-H, Wang PH (2002) Photocatalytic generation of hydrogen on Zr-MCM-41. Int J Hydrog Energy 27:859–862
Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712
CAS
Article
Google Scholar
Davydov L, Reddy EP, France P, Smirniotis PG (2001) Transition-metal-substituted titania-loaded MCM-41 as photocatalysts for the degradation of aqueous organics in visible light. J Catal 203:157–167
CAS
Article
Google Scholar
Yuan Y-P, Ruan L-W, Barber J, Loo SCJ, Xue C (2014) Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy. Environ Sci 7:3934–3951
CAS
Google Scholar
Dahl M, Liu Y, Yin Y (2014) Composite titanium dioxide nanomaterials. Chem Rev 114:9853–9889
CAS
Article
Google Scholar
Kubacka A, Fernández-García M, Colón G (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112(3):1555–1614
CAS
Article
Google Scholar
Blasco T, Corma A, Navaro MT, Pariente JP (1995) Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures. J Catal 156:65–74
CAS
Article
Google Scholar
Tauc J (1974) Amorphous and liquid semiconductors. Plenum, New York
Book
Google Scholar
Babu VJ, Kumar MK, Nair AS, Kheng TL, Allakhverdiev SI, Ramakrishna S (2012) Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures. Int J Hydrog Energy 37:897–904
Article
Google Scholar
Sing KSW, Everett DH, Haul R (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984). Pure Appl Chem 57(4):603–619
CAS
Article
Google Scholar
Uddin MT, Nicolas Y, Olivier C, Toupance T, Müller MM, Kleebe HJ, Rachut K, Ziegler J, Klein A, Jaegermann W (2013) Preparation of RuO2/TiO2 mesoporous heterostructures and rationalization of their enhanced photocatalytic properties by band alignment investigations. J Phys Chem C 117:22098–22110
CAS
Article
Google Scholar
Khorasani-Motlagh M, Noroozifar M, Yousefi M (2011)A simple new method to synthesize nanocrystalline ruthenium dioxide in the presence of octanoic acid as organic surfactant. Int J Nanosci Ser 7(4):167–172
Google Scholar
Jae J, Zheng W, Karim AM, Guo W, Lobo RF, Vlachos DG (2014) The role of Ru and RuO2 in the catalytic transfer hydrogenation of 5-hydroxymethylfurfural for the production of 2,5-dimethylfuran. ChemCatChem 6:848–856
CAS
Article
Google Scholar
Carballo JMG, Finocchio E, García S, Rojas S, Ojeda M, Busca J, Fierro JLG (2011) Support effects on the structure and performance of ruthenium catalysts for the Fischer–Tropsch synthesis. Catal Sci Technol 1:1013–1023
Article
Google Scholar
Dutta PK, Vaidyalingam AS (2003) Zeolite-supported ruthenium oxide catalysts for photochemical reduction of water to hydrogen. Microporous Mesoporous Mater 62:107–120
CAS
Article
Google Scholar
Bang S, Lee S, Park T, Ko Y, Shin S, Yim S-Y, Seo H, Jeon H (2012) Dual optical functionality of local surface plasmon resonance for RuO2 nanoparticle-ZnO nanorod hybrids grown by atomic layer deposition. J Mater Chem 22:14141–14148
CAS
Article
Google Scholar
Camblor MA, Corma A, Martinez A (1992) Synthesis of a titanium silicoaluminate isomorphous to zeolite-beta and its application as a catalyst for the selective oxidation of large organic-molecules. Chem Commun 8:589–590
Article
Google Scholar
Patake VD, Lokhande CD (2008) Chemical synthesis of nano-porous ruthenium oxide (RuO2) thin films for supercapacitor application. Appl Surf Sci 254:2820–2824
CAS
Article
Google Scholar
Ismail AA, Robben L, Bahnemann DW (2011) Study of the efficiency of UV and visible-light photocatalytic oxidation of methanol on mesoporous RuO2–TiO2 nanocomposites. ChemPhysChem 12:982–991
CAS
Article
Google Scholar
Uddin MT, Babot O, Thomas L, Olivier C, Redaelli M, D’Arienzo M, Morazzoni F, Jaegermann W, Rockstroh N, Junge H, Toupance T (2015) New insights into the photocatalytic properties of RuO2/TiO2 mesoporous heterostructures for hydrogen production and organic pollutant photodecomposition. J Phys Chem C 119:7006–7015
CAS
Article
Google Scholar
Nguyen-Phan T-D, Luo S, Vovchok D, Llorca J, Graciani J, Sanz JF, Sallis S, Xu W, Bai J, Piper LFJ, Polyansky DE, Fujita E, Senanayake SD, Stacchiola DJ, Rodriguez JA (2016) Visible light-driven H2 production over highly dispersed Ruthenia on rutile TiO2 nanorods. ACS Catal 6:407–417
CAS
Article
Google Scholar
Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130:(5):1676–1680
CAS
Article
Google Scholar
Watanabe K, Menzel D, Nilius N, Freund HJ (2006) Photochemistry on metal nanoparticles. Chem Rev 106:4301–4320
CAS
Article
Google Scholar
Wu F, Hu X, Fan J, Liu E, Sun T, Kang L, Hou W, Zhu C, Liu H (2013) Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics 8:501–508
CAS
Article
Google Scholar
Jiang J, Li H, Zhang L (2012) New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis. Chem-Eur J 18:6360–6369
CAS
Article
Google Scholar
Uddin MT, Nicolas Y, Olivier C, Servant L, Toupance T, Li S, Klein A, Jaegermann W (2015) Improved photocatalytic activity in RuO2–ZnO nanoparticulate heterostructures due to inhomogeneous space charge effects. Phys Chem Chem Phys 17:5090–5102
CAS
Article
Google Scholar
Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244
CAS
Article
Google Scholar
Xu D, Yang S, Jin Y, Chen M, Fan W, Luo B, Shi W (2015) Ag-decorated ATaO3 (A = K, Na) nanocube plasmonic photocatalysts with enhanced photocatalytic water-splitting properties. Langmuir 31:9694–9699
CAS
Article
Google Scholar
Lyubina TP, Markovskaya DV, Kozlova EA, Parmon VN (2013) Photocatalytic hydrogen evolution from aqueous solutions of glycerol under visible light irradiation. Int J Hydrog Energy 38:14172–14179
CAS
Article
Google Scholar
Rao H, Yu W-Q, Zheng W-Q, Bonin J, Fan Y-T, Hou H-W (2016) Highly efficient photocatalytic hydrogen evolution from nickel quinolinethiolate complexes under visible light irradiation. J Power Sources 324:253–260
CAS
Article
Google Scholar
Lee G-J, Anandan MS, Masten SJ, Wu JJ (2016) Photocatalytic hydrogen evolution from water splitting using Cu doped ZnS microspheres under visible light irradiation. Renew Energy 89:18–26
CAS
Article
Google Scholar
Clausen DN, Takashima K (2007) Efeitos dos parâmetros operacionais na fotodegradação do azo corante direct red 23 na interface dióxido de titânio/água. Quim Nova 30(8):1896–1899
CAS
Article
Google Scholar