Development of Silver Based Catalysts Promoted by Noble Metal M (M = Au, Pd or Pt) for Glycerol Oxidation in Liquid Phase


The liquid-phase oxidation of glycerol was studied to obtain glycolic acid as a value-added molecule. The effect of metal addition to silver based catalyst was investigated under strong basic condition. The best catalytic performance was obtained over silver catalyst promoted with a small amount of platinum Ag95–Pt5/CeO2. Namely, the conversion close to 54% was reached after 5 h of reaction at 60 °C, with the selectivity to glycolic acid of 51%. Further increase in the amount of promotor (up to 50%) changed the reaction mechanism to product selectively the glyceric acid.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Bozell J, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates - The US department of Energy’s “Top 10” revisited. Green Chem 12:539–554

    CAS  Article  Google Scholar 

  2. 2.

    Katryniok B, Kimura H, Skrzyńska E, Girardon J-S, Fongarland P, Capron M, Ducoulombier R, Mimura N, Paul S, Dumeignil F (2011) Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chem 13:1960–1979

    CAS  Article  Google Scholar 

  3. 3.

    Skrzyńska E, Zaid S, Girardon J-S, Capron M, Dumeignil F (2015) Catalytic behaviour of four different supported noble metals in the crude glycerol oxidation. Appl Catal A 499:89–100

    Article  Google Scholar 

  4. 4.

    Bianchi CL, Canton P, Dimitratos N, Porta F, Prati L (2005) Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals. Catal Today 102–103:203–212

    Article  Google Scholar 

  5. 5.

    Mallat T, Baiker A (2004) Oxidation of alcohols with molecular oxygen on solid catalysts. Chem Rev 104:3037–3058

    CAS  Article  Google Scholar 

  6. 6.

    Duhamel L, Fang W, Paul S, Dumeignil F (2014) Method Prod Hydrogen FR3000737(A1)

  7. 7.

    Skrzyńska E, Zaid S, Addad A, Girardon J.-S, Capron M, Dumeignil F (2016) Performance of Ag/Al2O3 catalysts in the liquid phase oxidation of glycerol—effect of preparation method and reaction conditions. Catal Sci Technol 6:3182–3196

    Article  Google Scholar 

  8. 8.

    Mott D, Mai NT, Thuy NTB, Sakata T, Higashimine K, Koyano M, Maenosono S (2011) Elucidation of the complex structure of nanoparticles composed of bismuth, antimony, and tellurium using scanning transmission microscopy. J Phys Chem C 11:17334–17340

    Article  Google Scholar 

  9. 9.

    Skrzyńska E, Wondołowska-Grabowska A, Capron M, Dumeignil F (2014) Crude glycerol as a raw material for the liquid phase oxidation reaction. Appl Catal A 482:245–257

    Article  Google Scholar 

  10. 10.

    Pelletier F (2012) Synthèse et étude de nanomatériaux hybrides magnétiques à base Fer-Bismuth. Thése de doctorat de l’université de Toulouse

  11. 11.

    Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ (2012) Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev 41:8099–8139

    CAS  Article  Google Scholar 

  12. 12.

    Skrzyńska E, Ftouni J, Mamede A-S, Addad A, Trentesaux M, Girardon J-S, Capron M, Dumeignil F (2014) Glycerol oxidation over gold supported catalysts—“Two faces” of sulphur based anchoring agent. J Mol Catal A 382:71–78

    Article  Google Scholar 

  13. 13.

    Dimitratos N, Porta F, Prati L (2005) Au, Pd (mono and bimetallic) catalysts supported on graphite using the immobilisation method: synthesis and catalytic testing for liquid phase oxidation of glycerol. Appl Catal A 291:210–214

    CAS  Article  Google Scholar 

  14. 14.

    Cook MM, Lander JA (1979) Use of Sodium borohydride to control heavy metal discharge in the photographic industry. J Appl Photogr Eng 5:144–147

    CAS  Google Scholar 

  15. 15.

    Ding RG, Yan ZF (2002) Adsorption properties studies of the nickel catalysts for carbon dioxide reforming of methane. Fuel Chem Div Preprints 47:103–105.

    CAS  Google Scholar 

  16. 16.

    Stathatos E, Lianos P, Falaras P, Siokou A (2000) Photocatalytically deposited silver nanoparticles on mesoporous TiO2 films. Langmuir 16:2398–2400

    CAS  Article  Google Scholar 

  17. 17.

    Zhang G, Du M, Li Q, Li X, Huang J, Jianga X, Sun D (2013) Green synthesis of Au–Ag alloy nanoparticles using Cacumen platycladi extract. RSC Adv 3:1878–1884

    CAS  Article  Google Scholar 

  18. 18.

    Kiinig U, Marksteiner P, Redinger J, Weinberger P (1986) A theoretical study of X-Ray photoemission spectra (XPS) of some noble metal alloys: Au/Pt, Ag/Au, Ag/Pt and Au/Ni. Z Phys B 65:139–114

    Article  Google Scholar 

  19. 19.

    Nascente PA, de Castro SG, Landers R, Kleiman GG (1991) X-ray photoemission and Auger energy shifts in some gold-palladium alloys. Phys Rev B 43:4659–4666

    CAS  Article  Google Scholar 

  20. 20.

    NIST X-ray Photoelectron Spectroscopy Database: AllDataNo = 30927.

  21. 21.

    Zhou X, Zheng L, Li R, Li B, Pillai S, Xu P, Zhang Y (2012) Biotemplated fabrication of size controlled palladium nanoparticle chains. J Mater Chem 22:8862–8867

    CAS  Article  Google Scholar 

  22. 22.

    Yue B, Ma Y, Tao H, Yu L, Jian G, Wang X, Wang X, Lu Y, Hu Z (2008) CNx nanotubes as catalyst support to immobilize platinum nanoparticles for methanol oxidation. J Mater Chem 18:1747–1750

    CAS  Article  Google Scholar 

  23. 23.

    Xu J, Liu X, Chen Y, Zhou Y, Lu T, Tang Y (2012) Tang. Platinum–Cobalt alloy networks for methanol oxidation electrocatalysis. J Mater Chem 22:23659–23667

    CAS  Article  Google Scholar 

  24. 24.

    Lu Z, Yang Z (2010) Interfacial properties of NM/CeO2 (111) (NM = noble metal atoms or clusters of Pd, Pt and Rh): a first principles study. J Phys Condens Matter 22:p. 475003-1-10

    Google Scholar 

Download references


This work was performed, in partnership with the SAS PIVERT, within the frame of the French Institute for the Energy Transition (Institut pour la Transition Energétique (ITE) P.I.V.E.R.T. ( selected as an Investment for the Future (“Investissements d’Avenir”). This work was supported, as part of the Investments for the Future, by the French Government under the reference ANR-001-01.

Author information



Corresponding author

Correspondence to Mickaël Capron.

Electronic supplementary material

Below is the link to the electronic supplementary material.


Supplementary material 1 (PDF 717 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zaid, S., Skrzyńska, E., Addad, A. et al. Development of Silver Based Catalysts Promoted by Noble Metal M (M = Au, Pd or Pt) for Glycerol Oxidation in Liquid Phase. Top Catal 60, 1072–1081 (2017).

Download citation


  • glycerol oxidation
  • silver based catalysts
  • glycolic acid