Topics in Catalysis

, Volume 60, Issue 15–16, pp 1119–1128 | Cite as

Effect of La as Promoter in the Photoreduction of CO2 Over TiO2 Catalysts

  • P. Reñones
  • F. Fresno
  • J. L. G. Fierro
  • V. A. de la Peña O’SheaEmail author
Original Paper


In this work, TiO2 has been modified by treating it thermally together with different proportions (0.5–15 wt%) of La2O3. The resulting materials have been extensively characterized by XRD, TEM, N2 adsorption isotherms, temperature-programmed CO2 desorption, Raman, UV–Vis photoluminescence and X-ray photoelectron spectroscopies. The activity tests of these materials for the gas-phase photocatalytic reduction of carbon dioxide show that the main products of the reaction are in all cases CO and CH4, together with H2 from the parallel reduction of water. After the preparation procedure, La phases are best described as oxycarbonates, and lead to improved activity with respect to TiO2 with La contents up to 5 wt%. Higher loadings do not, however, lead to further enhanced activity. Retarded electron–hole recombination and enhanced CO2 adsorption are invoked as the key factors contributing to this activity improvement, which is optimized in the case of 0.5 wt% La leading to higher productions of CO and CH4 and increased quantum efficiency with respect to titania.


CO2 photoreduction Artificial photosynthesis TiO2 Lanthanum Promoter 



This work has received financial support from the Spanish Ministry of Economy and Competitiveness through the project SolarFuel (ENE2014-55071-JIN). Funding of the FOTOFUEL Network (ENE2016-82025-REDT) by this Ministry is gratefully acknowledged. F.F. thanks financial support from the Amarout-II PEOPLE-COFUND Marie Skłodowska-Curie Action.


  1. 1.
    Framework Convention on Climate Change (2014) United Nations.
  2. 2.
    de la Peña O’Shea VA, Serrano DP, Coronado JM (2015) In: Rozhkova E, Ariga K (eds) From molecules to materials. Pathways to artificial photosynthesis, Springer, LondonGoogle Scholar
  3. 3.
    Li K, An X, Park KH, Khraisheh M, Tang J (2014) Catal Today 224:3–12CrossRefGoogle Scholar
  4. 4.
    Yuan L, Xu YJ (2015) Appl Surf Sci 342:154–167CrossRefGoogle Scholar
  5. 5.
    Ola O, Maroto-Valer MM (2015) J Photochem Photobiol C 24:16–42CrossRefGoogle Scholar
  6. 6.
    Protti S, Albini A, Serpone N (2014) Phys Chem Chem Phys 16:19790–19827CrossRefGoogle Scholar
  7. 7.
    Fresno F, Portela R, Suárez S, Coronado JM (2014) J Mater Chem A 2:2863CrossRefGoogle Scholar
  8. 8.
    Tu W, Zhou Y, Zou Z (2014) Adv Mater 16:4607–4626CrossRefGoogle Scholar
  9. 9.
    Chen D, Zhang X, Lee AF (2015) J Mater Chem A 3:14487–14516CrossRefGoogle Scholar
  10. 10.
    Xie S, Zhang Q, Liu G, Wang Y (2016) Chem Commun 52:35–59CrossRefGoogle Scholar
  11. 11.
    Lee AF (2015) J Mater Chem A 3:14487–14516CrossRefGoogle Scholar
  12. 12.
    Bai S, Yin W, Wang L, Li Z, Xiong Y (2016) RCS Adv 6:57446–57463Google Scholar
  13. 13.
    Liu L, Zhao C, Pitts D, Li Y (2014) Catal Sci Technol 4:1539–1546CrossRefGoogle Scholar
  14. 14.
    Xie S, Wang Y, Zhang Q, Fan W, Deng W, Wang Y (2013) Chem Commun 49:2451–2453CrossRefGoogle Scholar
  15. 15.
    Kay A, Graetzel M (2002) Chem Mater 14:2930CrossRefGoogle Scholar
  16. 16.
    Orera A, Larraz G, Sanjuán ML (2013) J Eur Ceram Soc 33:2103CrossRefGoogle Scholar
  17. 17.
    Taylor RP, Schrader GL (1991) Ind Eng Chem Res 30:1016–1023CrossRefGoogle Scholar
  18. 18.
    Zhang ZL, Verykios XE (1996) Appl Catal A 138:109–133CrossRefGoogle Scholar
  19. 19.
    Yu H, Xue B, Liu P, Qiu J, Wen W, Zhang S, Zhao H (2012) ACS Appl Mater Interfaces 4:1289–1294CrossRefGoogle Scholar
  20. 20.
    Liu QY, Fang ZB, Ji T, Liu SY, Tan YS, Chen JJ, Zhu YY (2014) Chin Phys Lett 31:027702CrossRefGoogle Scholar
  21. 21.
    Collado L, Jana P, Sierra B, Coronado JM, Pizarro P, Serrano DP, de la Peña O’Shea VA (2013) Chem Eng J 224:128–135CrossRefGoogle Scholar
  22. 22.
    Zhang J, Li M, Feng Z, Chen J, Li C (2006) J Phys Chem B 110:927–935CrossRefGoogle Scholar
  23. 23.
    Grätzel M (1989) Heterogeneous photochemical electron transfer. XRC Press Inc, Boca RatonGoogle Scholar
  24. 24.
    Liu B, Wen L, Zhao X (2007) Mater Chem Phys 106:350–353CrossRefGoogle Scholar
  25. 25.
    Pan DC, Zhao NN, Wang Q, Jiang S, Ji X, An L (2005) Adv Mater 17:1991–1995CrossRefGoogle Scholar
  26. 26.
    Liqiang J, Yichun Q, Baiqi W, Shudan L, Baojiang J, Libin Y, Wei F, Honggang F, Jiazhong S (2006) Sol Energy Mater Sol Cells 90:1773–1787CrossRefGoogle Scholar
  27. 27.
    Sunding MF, Hadidi K, Diplas S, Løvvika OM, Norby TE, Gunnæs AE (2011) J Electron Spectrosc Relat Phenom 184:399–409CrossRefGoogle Scholar
  28. 28.
    Mullica DF, Lok CKC, Perkins HO, Young V (1985) Phys Rev B 31:4039–4042CrossRefGoogle Scholar
  29. 29.
    Collado L (2015) PhD Thesis, Universidad Rey Juan CarlosGoogle Scholar
  30. 30.
    Collado L, Reynal A, Coronado JM, Serrano DP, Durrant JR, de la Peña O’Shea VA (2015) Appl Catal B 178:177–185CrossRefGoogle Scholar
  31. 31.
    Villa K, Murcia-López S, Morante JR, Andreu T (2016) Appl Catal B 187:30–35CrossRefGoogle Scholar
  32. 32.
    León M, Diaz E, Bennici S, Vega A, Ordóñez S, Auroux A (2010) Ind Eng Chem Res 49:3663–3671CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • P. Reñones
    • 1
  • F. Fresno
    • 1
  • J. L. G. Fierro
    • 2
  • V. A. de la Peña O’Shea
    • 1
    Email author
  1. 1.Photoactivated Processes Unit, IMDEA Energy InstituteParque Tecnológico de MóstolesMóstolesSpain
  2. 2.Group of Sustainable Energy and Chemistry (EQS)Institute of Catalysis and Petrochemistry (ICP-CSIC)CantoblancoSpain

Personalised recommendations