Skip to main content

Advertisement

Log in

Isosorbide Production from Sorbitol over Heterogeneous Acid Catalysts: Screening and Kinetic Study

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The catalytic performance of two types of heterogeneous acid catalysts—sulfonic acid-functionalized materials and aluminum containing zeolites,—in the dehydration of sorbitol to isosorbide, in solventless and autogenous pressure conditions, has been studied. Catalysts screening evidenced strong differences between sulfonic acid-based materials and acid zeolites in terms of catalytic performance. Whereas sulfonic materials, such as Amberlyst-70 and SBA-15-Pr-SO3H, showed a very high catalytic activity, zeolites with beta structure evidenced good catalytic performance together with minimized promotion of side reactions (production of non-desired sorbitans, humins, etc.). Kinetic studies performed at different temperatures, adjusting to a Langmuir–Hinshelwood type model, allowed correlating the physicochemical properties of the acid materials with their catalytic performance in sorbitol dehydration. Thus, the analysis of initial selectivity through kinetic constants comparison indicated that commercial beta zeolite with a Si/Al ratio of 19 is the most selective catalyst for the production of isosorbide, though following a slower kinetics than the sulfonic materials. Furthermore, an equivalent hierarchical beta zeolite has been synthesised and evaluated, resulting in a slight improvement of the catalytic performance, in terms of both yield and selectivity to isosorbide. This improvement is attributed to the superior textural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fukuoka A, Dhepe PL (2006) Angew Chem Int Ed 118:5285–5287

    Article  Google Scholar 

  2. Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) ChemCatChem 3:82–94

    Article  Google Scholar 

  3. Gallezot P, Cerino PJ, Blanc B, Flèche G, Fuertes P (1994) J Catal 146:93–102

    Article  CAS  Google Scholar 

  4. Hoffer BW, Crezee E, Mooijman PRM, van Langeveld AD, Kapteijn F, Moulijn JA (2003) Catal Today 79–80:35–41

    Article  Google Scholar 

  5. Zhang B, Li X, Wu Q, Zhang C, Yu Y, Lan M, Wei X, Ying Z, Liu T, Liang G, Zhao F (2016) Green Chem 18:3315–3323

    Article  CAS  Google Scholar 

  6. Faba F, Kusema BT, Murzina EV, Tokarev A, Kumar N, Smeds A, Díaz E, Ordóñez S, Mäki-Arvela P, Willför S, Salmi T, Murzin DY (2014) Microporous Mesoporous Mater 189:189–199

    Article  CAS  Google Scholar 

  7. Zhang J, Li J-B, Wu S-B, Liu Y (2013) Ind Eng Chem Res 52:11799–11815

    Article  CAS  Google Scholar 

  8. Rose M, Palkovits R (2012) ChemSusChem 5:167–176

    Article  CAS  Google Scholar 

  9. Fenouillot F, Rousseau A, Colomines G, Saint-Loup R, Pascault J-P (2010) Progr Polym Sci 35:578–622

    Article  CAS  Google Scholar 

  10. Sheldon RA (2014) Green Chem 16:950–963

    Article  CAS  Google Scholar 

  11. Flèche G, Huchette M (1986) Starch/Stärke 38(1):26–30

    Article  Google Scholar 

  12. Bock K, Pedersen P, Thogersen H (1981) Acta Chem Scand B 35:441–449

    Article  Google Scholar 

  13. Li N, Huber GW (2010) J Catal 270:48–59

    Article  CAS  Google Scholar 

  14. Yang G, Pidko EA, Hensen EJM (2012) J Catal 295:122–132

    Article  CAS  Google Scholar 

  15. Polaert I, Felix MC, Fornasero M, Marcotte S, Buvat J-C, Estel L (2013) Chem Eng J 222:228–239

    Article  CAS  Google Scholar 

  16. Li J, Buijs W, Berger RJ, Moulijn JA, Makkle M (2014) Catal Sci Technol 4:152–163

    Article  CAS  Google Scholar 

  17. Haines AH, Wells AG (1973) Carbohydr Res 27:261–264

    Article  CAS  Google Scholar 

  18. Koerner TAW, Voll RJ, Younathan ES (1977) Carbohydr Res 59:403–416

    Article  CAS  Google Scholar 

  19. Yabushita M, Kobayashi H, Shrotri A, Hara K, Ito S, Fukuoka A (2015) Bull Chem Soc Jpn 88:996–1002

    Article  CAS  Google Scholar 

  20. Kurszewska M, Skorupowa E, Madaj J, Konitz A, Wojnowki W, Wiśniewski A (2002) Carbohydr Res 337:1261–1268

    Article  CAS  Google Scholar 

  21. Kobayashi H, Yokoyama H, Feng B, Fukuoka A (2015) Green Chem 17:2732–2735

    Article  CAS  Google Scholar 

  22. Otomo R, Yokoi T, Tatsumi T (2015) Appl Catal A 505:28–35

    Article  CAS  Google Scholar 

  23. Yamaguchi A, Sato O, Mimura N, Shirai M (2015) Catal Commun 67:59–63

    Article  CAS  Google Scholar 

  24. Barbaro P, Liguori F, Moreno-Marrodan C (2016) Green Chem 18:2935–2940

    Article  CAS  Google Scholar 

  25. Kang HY, Hwang DW, Hwang YK, Hwang J-S, Chang J-S (2013) Korean Chem Eng Res 51:189–194

    Article  Google Scholar 

  26. Cubo A, Iglesias J, Morales G, Melero JA, Moreno J, Sánchez-Vázquez R (2017) Appl Catal A. doi:10.1016/j.apcata.2016.10.029

    Google Scholar 

  27. Dabbawala AA, Park JJ, Valekar AH, Mishra DK, Hwang J-S (2015) Catal Commun 69:207–211

    Article  CAS  Google Scholar 

  28. Shi J, Shan Y, Tian Y, Wan Y, Zheng Y, Feng Y (2016) RSC Adv 6:13514–13521

    Article  CAS  Google Scholar 

  29. Xia J, Yu D, Hu Y, Zou B, Sun P, Li H, Huang H (2011) Catal Commun 12:544–547

    Article  CAS  Google Scholar 

  30. Khan NA, Mishra DK, Ahmed I, Yoon JW, Hwang J-S, Jhung SH (2013) Appl Catal A 452:34–38

    Article  CAS  Google Scholar 

  31. Ahmed I, Khan NA, Mishra DK, Lee JS, Hwang J-S, Jhung SH (2013) Chem Eng Sci 93:91–95

    Article  CAS  Google Scholar 

  32. Dabbawala AA, Mishra DK, Hwang JS (2013) Catal Commun 42:1–5

    Article  CAS  Google Scholar 

  33. Rusu OA, Hoelderich WF, Wyart H, Ibert M (2015) Appl Catal B 176–177:139–149

    Article  Google Scholar 

  34. Zhang J, Wang L, Liu F, Meng X, Mao J, Xiao F-S (2014) Catal Today 242:249–254

    Article  Google Scholar 

  35. Dabbawala AA, Mishra DK, Huber GW, Hwang J-S (2015) Appl Catal A 492:252–261

    Article  CAS  Google Scholar 

  36. Margolese D, Melero JA, Christiansen SC, Chmelka B, Stucky GD (2000) Chem Mater 12(8):2448–2459

    Article  CAS  Google Scholar 

  37. Serrano DP, Aguado J, Escola JM, Rodríguez JM, Peral A (2006) Chem Mater 18(10):2462–2464

    Article  CAS  Google Scholar 

  38. Ruiz-Matute AI, Hernández-Hernández O, Rodríguez-Sánchez S., Sanz ML, Martínez-Castro I (2011) J Chromatogr B 879:1226–1240

    Article  CAS  Google Scholar 

  39. Schummer C, Delhomme O, Appenzeller BMR, Wenning R, Millet M (2009) Talanta 77:1473–1482

    Article  CAS  Google Scholar 

  40. Melero JA, Stucky GD, van Grieken R, Morales G (2002) J Mater Chem 12:1–8

    Article  Google Scholar 

  41. Melero JA, Iglesias J, Morales G (2013) Designing porous inorganic architectures. In: Wilson K, Lee AF (eds) Heterogeneous catalysts for clean technology: spectroscopy, design, and monitoring. Wiley, Weinheim. doi:10.1002/9783527658985.ch8

    Google Scholar 

Download references

Acknowledgements

Financial support from Spanish Ministry of Economy and Competitiveness (Project CTQ2014-52907-R) and from the Regional Government of Madrid (Project S2013/MAE-2882) is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Morales.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 424 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, G., Iglesias, J., Melero, J.A. et al. Isosorbide Production from Sorbitol over Heterogeneous Acid Catalysts: Screening and Kinetic Study. Top Catal 60, 1027–1039 (2017). https://doi.org/10.1007/s11244-017-0794-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0794-0

Keywords

Navigation