Topics in Catalysis

, Volume 60, Issue 9–11, pp 637–643 | Cite as

Decomposition of Lignin Using MO–MgAlOy Mixed Oxide Catalysts (M=Co, Ni and Cu) in Supercritical Ethanol

Original Paper
  • 126 Downloads

Abstract

In this study, we performed the depolymerization reaction of concentrated sulfuric acid hydrolysis lignin (CSAHL) in supercritical ethanol without supplying external hydrogen. Cu demonstrated the highest monoaromatic yield of 18.4 wt% among Co, Ni and Cu when incorporated into MgAlOy. With increasing the amount of Cu loading, it was found that the optimum Cu loading was 30 wt%, where the number of acid sites had the maximum. In case of CuO–MgAlOy sample with higher Cu loading than 30 wt%, the decrease in the acid sites and the significant sintering of Cu metal during reaction were observed, leading to the decline in the monoaromatic yield.

Keywords

Concentrated sulfuric acid hydrolysis lignin (CSAHL) Supercritical ethanol CuO(X)MgAlOy MO(30)MgAlOy In-situ hydrogen 

References

  1. 1.
    Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044–4098CrossRefGoogle Scholar
  2. 2.
    Beauchet R, Monteil RF, Lavoie JM (2012) Bioresource Technol 121:328–334CrossRefGoogle Scholar
  3. 3.
    Zakzeski J, Jongerius AL, Bruijnincx PCA, Weckhuysen BM (2012) Chemsuschem 5:1602–1609CrossRefGoogle Scholar
  4. 4.
    Barta K, Matson TD, Fettig ML, Scott SL, Iretskii AV, Ford PC (2010) Green Chem 12:1640–1647CrossRefGoogle Scholar
  5. 5.
    Jongerius AL, Bruijnincx PCA, Weckhuysen BM (2013) Green Chem 15:3049–3056CrossRefGoogle Scholar
  6. 6.
    Pineda A, Lee AF (2016) Appl Petrochem Res 6:243–256Google Scholar
  7. 7.
    Song Q, Wang F, Cai J, Wang Y, Zhang J, Yu W, Xu J (2013) Energ Environ Sci 6:994–1007CrossRefGoogle Scholar
  8. 8.
    Huang S, Mahmood N, Tymchyshyn M, Yuan Z, Xu C (2014) Bioresourc Technol 171:95–102CrossRefGoogle Scholar
  9. 9.
    Kleinert M, Barth T (2008) Chem Eng Technol 31:736–745CrossRefGoogle Scholar
  10. 10.
    Xu W, Miller SJ, Agrawal PK, Jones CW (2012) Chemsuschem 5:667–675CrossRefGoogle Scholar
  11. 11.
    Warner G, Hansen TS, Riisager A, Beach ES, Barta K, Anastas PT (2014) Bioresource Technol 161:78–83CrossRefGoogle Scholar
  12. 12.
    Brand S, Susanti RF, Kim SK, Lee HS, Kim J, Sang BI (2013) Energy 59:173–182CrossRefGoogle Scholar
  13. 13.
    Patil PT, Armbruster U, Richter M, Martin A (2011) Energ Fuel 25:4713–4722CrossRefGoogle Scholar
  14. 14.
    He J, Zhao C, Lercher JA (2012) J Am Chem Soc 134:20768–20775CrossRefGoogle Scholar
  15. 15.
    Strassberger Z, Alberts AH, Louwerse MJ, Tanase S, Rothenberg G (2013) Green Chem 15:768–774CrossRefGoogle Scholar
  16. 16.
    Huang XM, Koranyi TI, Boot MD, Hensen EJM (2014) Chemsuschem 7:2276–2288CrossRefGoogle Scholar
  17. 17.
    Macala GS, Matson TD, Johnson CL, Lewis RS, Iretskii AV, Ford PC (2009) Chemsuschem 2:215–217CrossRefGoogle Scholar
  18. 18.
    Cavani F, Trifirò F, Vaccari A (1991) Catal Today 11:173–301CrossRefGoogle Scholar
  19. 19.
    Matson TD, Barta K, Iretskii AV, Ford PC (2011) J Am Chem Soc 133:14090–14097CrossRefGoogle Scholar
  20. 20.
    Hu H, Cai S, Li H, Huang L, Shi L, Zhang D (2015) J Phys Chem C C 119:22924–22933CrossRefGoogle Scholar
  21. 21.
    Manfro RL, Pires TPMD, Ribeiro NFP, Souza MMVM (2013) Catal Sci Technol 3:1278–1287CrossRefGoogle Scholar
  22. 22.
    Fornasari G, Gusi S, Trifiro F, Vaccari A (1987) Ind Eng Chem Res 26:1500–1505CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Chemical and Biological Engineering, Institute of Chemical ProcessesSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations