Skip to main content
Log in

Selective Hydrogenation of Acetylene Over Pd/Al2O3 Catalysts: Effect of Non-thermal RF Plasma Preparation Methodologies

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Supported palladium nanocatalysts have been reported to be active in selective hydrogenation of acetylene. In this work, non-thermal radio frequency plasma modification has been applied to Pd/Al2O3 catalysts for selective hydrogenation of acetylene in the presence of excess ethylene. High ethylene selectivity, good acetylene conversion activity and high TOF were obtained on the plasma-treated catalysts. To understand the plasma effect, the catalysts were characterized by differential scanning calorimetry in hydrogen (H2-DSC), pulse H2 chemisorption, X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption with ethylene (C2H4-TPD) experiments. XPS and H2-DSC results confirmed that the Pd precursor could be effectively reduced to the metallic state during the room temperature plasma treatment. Plasma treatment also improved the dispersion of Pd particles with strong interaction between Al2O3 support and PdO and Pd nitrate precursors. In addition, C2H4-TPD indicated that plasma treatment could lead to an enhanced catalytic performance on selective hydrogenation of acetylene. It demonstrates that the non-thermal RF plasma treatment is an effective way to manipulate surface properties and the interaction between metals and supports of supported Pd catalysts for selective hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu D (2016) Appl Surf Sci 386:125–137

    Article  CAS  Google Scholar 

  2. Yang B, Burch R, Hardacre C, Hu P, Hughes P (2016) Surf Sci 646:45–49

    Article  CAS  Google Scholar 

  3. Crespo-Quesada M, Yoon S, Jin M, Xia Y, Weidenkaff A, Kiwi-Minsker L (2014) ChemCatChem 6:767–771

    Article  CAS  Google Scholar 

  4. Bazzazzadegan H, Kazemeini M, Rashidi AM (2011) Appl Catal A 399:184–190

    Article  CAS  Google Scholar 

  5. Yan X, Bao J, Yuan C, Wheeler J, Lin WY, Li R, Jang BWL (2016) J Catal 344: 194–201

    Article  CAS  Google Scholar 

  6. Borodziński A, Bond GC (2006) Catal Rev 48: 91–144

    Article  Google Scholar 

  7. Borodziński A, Bond GC (2008) Catal Rev 50: 379–469

    Article  Google Scholar 

  8. Oliver RG, Wells PB (1977) J Catal 47:364–370

    Article  CAS  Google Scholar 

  9. Crampton AS, Rötzer MD, Schweinberger FF, Yoon B, Landman U, Heiz U (2016) J Catal 333: 51–58

    Article  CAS  Google Scholar 

  10. Zhang H, Yang Y, Dai W, Lu S, Yu H, Ji Y (2014) Chin J Chem Eng 22:516–521

    Article  CAS  Google Scholar 

  11. Benavidez AD, Burton PD, Nogales JL, Jenkins AR, Ivanov SA, Miller JT, Karim AM, Datye AK (2014) Appl Catal A 482:108–115

    Article  CAS  Google Scholar 

  12. Zhang Y, Diao W, Williams CT, Monnier JR (2014) Appl Catal A 469:419–426

    Article  CAS  Google Scholar 

  13. Kim E, Shin EW, Bark CW, Chang I, Yoon WJ, Kim W-J (2014) Appl Catal A 471:80–83

    Article  CAS  Google Scholar 

  14. Kim SK, Lee JH, Ahn IY, Kim W-J, Moon SH (2011) Appl Catal A 401:12–19

    Article  CAS  Google Scholar 

  15. Mei D, Sheth PA, Neurock M, Smith CM (2006) J Catal 242:1–15

    Article  CAS  Google Scholar 

  16. Borodziński A, Cybulski A (2000) Appl Catal A 198:51–66

    Article  Google Scholar 

  17. Albers P, Seibold K, Prescher G, Müller H (1999) Appl Catal A 176:135–146

    Article  CAS  Google Scholar 

  18. Karakhanov E, Maximov A, Kardasheva Y, Semernina V, Zolotukhina A, Ivanov A, Abbott G, Rosenberg E, Vinokurov V (2014) ACS Appl Mater Interfaces 6:8807–8816

    Article  CAS  Google Scholar 

  19. Long W, Brunelli NA, Didas SA, Ping EW, Jones CW (2013) ACS Catal 3:1700–1708

    Article  CAS  Google Scholar 

  20. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Angew Chem Int Ed 46:4630–4660

    Article  CAS  Google Scholar 

  21. Yuan Y, Yan N, Dyson PJ (2012) ACS Catal 2:1057–1069

    Article  CAS  Google Scholar 

  22. Layan Savithra GH, Bowker RH, Carrillo BA, Bussell ME, Brock SL (2013) ACS Appl Mater Interfaces 5:5403–5407

    Article  CAS  Google Scholar 

  23. Tsung C-K, Fan J, Zheng N, Shi Q, Forman AJ, Wang J, Stucky GD (2008) Angew Chem Int Ed 47:8682–8686

    Article  CAS  Google Scholar 

  24. Wirth S, Harnisch F, Quade A, Brüser M, Brüser V, Schröder U, Savastenko NA (2011) Plasma Processes Polym 8:914–922

    Article  CAS  Google Scholar 

  25. Liu C-J, Vissokov GP, Jang BWL (2002) Catal Today 72:173–184

    Article  CAS  Google Scholar 

  26. Li Y-N, Xie Y-B, Liu C-J (2008) Catal Lett 125:130–133

    Article  CAS  Google Scholar 

  27. Nozaki T, Hiroyuki T, Okazaki K (2005) Energy Fuels 20:339–345

    Article  Google Scholar 

  28. Stere C E, Adress W, Burch R, Chansai S, Goguet A, Graham W G, De Rosa F, Palma V, Hardacre C (2014) ACS Catal 4:666–673

    Article  CAS  Google Scholar 

  29. Liu X, Li Y, Lee JW, Hong C-Y, Mou C-Y, Jang BWL (2012) Appl Catal A 439–440:8–14

    Article  Google Scholar 

  30. Zhou T, Jang K, Jang BWL (2013) Catal Today 211:147–155

    Article  CAS  Google Scholar 

  31. Li Y, Jang BWL (2011) Appl Catal A 392:173–179

    Article  CAS  Google Scholar 

  32. Ratanatawanate C, Macias M, Jang BWL (2005) Ind Eng Chem Res 44:9868–9874

    Article  CAS  Google Scholar 

  33. Yan X, Zhao B, Liu Y, Li Y (2015) Catal Today 256:29–40

    Article  CAS  Google Scholar 

  34. Yan X, Li S, Bao J, Zhang N, Fan B, Li R, Liu X, Pan YX (2016) ACS Appl Mater Interfaces 8:17060–17067

    Article  CAS  Google Scholar 

  35. Lee SW, Mattevi C, Chhowalla M, Sankaran RM (2012) J Phys Chem Lett 3:772–777

    Article  CAS  Google Scholar 

  36. Wang J, Wang Z, Liu C-J (2014) ACS Appl Mater Interfaces 6:12860–12867

    Article  CAS  Google Scholar 

  37. Khataee A, Bozorg S, Khorram S, Fathinia M, Hanifehpour Y, Joo SW (2013) Ind Eng Chem Res 52:18225–18233

    Article  CAS  Google Scholar 

  38. Wang Z, Yang RT (2010) J Phys Chem C 114:5956–5963

    Article  CAS  Google Scholar 

  39. Li Y, Jang BWL (2010) Ind Eng Chem Res 49:8433–8438

    Article  CAS  Google Scholar 

  40. Amorim C, Keane MA (2008) J Colloid Interface Sci 322:196–208

    Article  CAS  Google Scholar 

  41. Duca D, Frusteri F, Parmaliana A, Deganello G (1996) Appl Catal A 146:269–284

    Article  CAS  Google Scholar 

  42. Cui X, Zhou X, Chen H, Hua Z, Wu H, He Q, Zhang L, Shi J (2011) Int J Hydrog Energy 36:10513–10521

    Article  CAS  Google Scholar 

  43. Sheth PA, Neurock M, Smith CM (2003) J Phys Chem B 107:2009–2017

    Article  CAS  Google Scholar 

  44. He Y-F, Feng J-T, Du Y-Y, Li D-Q (2012) ACS Catal 2:1703–1710

    Article  CAS  Google Scholar 

  45. Liu C-J, Zhao Y, Li Y, Zhang D-S, Chang Z, Bu X-H (2014) ACS Sustain Chem Eng 2:3–13

    Article  CAS  Google Scholar 

  46. Seo H, Kim J-H, Shin Y-H, Chung K-H (2004) J Appl Phys 96:6039–6044

    Article  CAS  Google Scholar 

  47. Wang W-G, Xu Y, Yang X-F, Wang W-C, Zhu A-M (2005) Rapid Commun Mass Spectrom 19:1159–1166

    Article  CAS  Google Scholar 

  48. Kim HY, Kang SK, Kwon HC, Lee HW, Lee JK (2013) Plasma Processes Polym 10:686–697

    Article  CAS  Google Scholar 

  49. Tomoyuki M, Kari N, Timo G, Deborah OC, William GG (2013) Plasma Sources Sci Technol 22:045010

    Article  Google Scholar 

  50. Parvulescu VI, Magureanu M, Lukes P (2012) Plasma chemistry and catalysis in gases and liquids. Wiley-VCH Verlag & Co. KGaA, Weinheim

    Book  Google Scholar 

  51. Shibata M, Nakano N, Makabe T (1996) J Appl Phys 80:6142–6147

    Article  CAS  Google Scholar 

  52. Roland U, Holzer F, Kopinke FD (2005) Appl Catal B 58:217–226

    Article  CAS  Google Scholar 

  53. McBriarty ME, Campbell GP, Drake TL, Elam JW, Stair PC, Ellis DE, Bedzyk MJ (2015) J Phys Chem C 119:16179–16187

    Article  CAS  Google Scholar 

  54. Liu C-J, Zou J, Yu K, Cheng D, Han Y, Zhan J, Ratanatawanate C, Jang BWL (2006) Pure Appl Chem 78:1227–1238

    CAS  Google Scholar 

  55. Achtyl JL, Vlassiouk IV, Dai S, Geiger F (2014) J Phys Chem C 118:17745–17755

    Article  CAS  Google Scholar 

  56. Zea H, Chen C-K, Lester K, Phillips A, Datye A, Fonseca I, Phillips J (2004) Catal Today 89:237–244

    Article  CAS  Google Scholar 

  57. Belloni J (2006) Catal Today 113:141–156

    Article  CAS  Google Scholar 

  58. Stuve EM, Madix RJ (1985) J Phys Chem 89:105–112

    Article  CAS  Google Scholar 

  59. Zhu B, Jang BWL (2014) J Mol Catal A 395:137–144

    Article  CAS  Google Scholar 

  60. Gaube J, Klein HF (2014) Appl Catal A 470:361–368

    Article  CAS  Google Scholar 

  61. Segura Y, López N, Pérez-Ramírez J (2007) J Catal 247:383–386

    Article  CAS  Google Scholar 

  62. Li J-N, Pu M, Ma C-C, Tian Y, He J, Evans D G (2012) J Mol Catal A 359:14–20

    Article  CAS  Google Scholar 

  63. Fahmi A, van Santen RA (1996) J Phys Chem 100: 5676–5680

    Article  CAS  Google Scholar 

  64. Liu X, Mou C-Y, Lee S, Li Y, Secrest J, Jang B W L (2012) J Catal 285:152–159

    Article  CAS  Google Scholar 

  65. Durgasri DN, Vinodkumar T, Lin F, Alxneit I, Reddy BM (2014) Appl Surf Sci 314:592–598

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the NSF-REU program at TAMU-Commerce and Welch Foundation (Grant # T-0014) is acknowledged. A portion of this research was conducted at the Center for Nanophase Materials Sciences, sponsored at Oak Ridge National Laboratory (CNMS-ORNL User Project).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanan Li or Ben W.-L. Jang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Jang, B.WL. Selective Hydrogenation of Acetylene Over Pd/Al2O3 Catalysts: Effect of Non-thermal RF Plasma Preparation Methodologies. Top Catal 60, 997–1008 (2017). https://doi.org/10.1007/s11244-017-0765-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0765-5

Keywords

Navigation