Experimental Strategies for Controlling Radical Chain Reactions

Abstract

Free-radical chain reactions have been a mainstay of organic chemistry for many years due to the unique chemical behavior of highly reactive radical species. Recently, there has been a surge of interest in utilizing free-radical chain processes in the development of new synthetic methods for a variety of C–H functionalizations. Robust and reliable synthetic methods demand control, or at the very least, mediation of reactive species that are generated during radical chain processes. In the context of reaction optimization for intermolecular reactions, several recent experimental strategies for controlling the rates of radical initiation and propagation are discussed.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Scheme 5
Fig. 2
Scheme 6
Fig. 3
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11

Notes

  1. 1.

    For recent references that specifically note changes in reactivity between homogeneous and heterogeneous radical reactions see:

  2. 2.

    For seminal contribution, see:

  3. 3.

    For a review on direct radical additions to pharmaceutically relevant molecules, see:

  4. 4.

    For the first report of electrochemical initiation of metal-sulfinates see:

  5. 5.

    For an in-depth description of electrochemical/IR experimental setup see:

  6. 6.

    For a review on the persistent radical effect see

References

  1. 1.

    Minisci F, Vismara E, Morini G, Fontana F, Levi S, Serravalle M (1986) J Org Chem 51:476–479

    CAS  Article  Google Scholar 

  2. 2.

    Li Z, Wang Z, Zhu L, Tan X, Li C (2014) J Am. Chem. Soc 136:16439–16443

    CAS  Article  Google Scholar 

  3. 3.

    Suresh R, Kumaran RS, Senthilkumar V, Muthusubramanian S (2014) RSC Adv 4:31685–31688

    CAS  Article  Google Scholar 

  4. 4.

    Xia R, Xie MS, Niu HY, Qu GR, Guo HM (2014) Org Lett 16:444–447

    CAS  Article  Google Scholar 

  5. 5.

    Mai WP, Sun B, You LQ, Yang LR, Mao P, Yuan JW, Xiao YM, Qu LB (2015) Org. Biomol Chem 13:2750

    CAS  Article  Google Scholar 

  6. 6.

    Minisci F, Bernardi R, Bertini F, Galli R, Perchinummo M (1971) Tetrahedron 27:3575–3579

    CAS  Article  Google Scholar 

  7. 7.

    Minisci F (1973) Synthesis 1973:1–24

    Article  Google Scholar 

  8. 8.

    Minisci F, Vismara E, Fontana F (1989) Heterocycles 28:489–519

    CAS  Article  Google Scholar 

  9. 9.

    Minisci F, Fontana F, Vismara EJ (1990) Heterocycl Chem 27:79–96

    CAS  Article  Google Scholar 

  10. 10.

    Duncton MA (2011) J Med Chem Comm 2:1135–1161

    CAS  Article  Google Scholar 

  11. 11.

    Punta C, Minisci F (2008) Trends Heterocycl Chem 13:1–68

    CAS  Google Scholar 

  12. 12.

    Seiple IB, Su S, Rodriguez RA, Gianatassio R, Fujiwara Y, Sobel AL, Baran PS (2010) J Am Chem Soc 132:13194–13196

    CAS  Article  Google Scholar 

  13. 13.

    Fujiwara Y, Domingo V, Seiple IB, Gianatassio R, Del Bel M, Baran PS (2011) J Am Chem Soc 133:3292–3295

    CAS  Article  Google Scholar 

  14. 14.

    Baxter RD, Liang Y, Hong X, Brown TA, Zare RN, Houk KN, Baran PS, Blackmond DG (2015) ACS Cent Sci 1:456–462

    CAS  Article  Google Scholar 

  15. 15.

    Langlois BR, Laurent E, Roidot N (1991) Tetrahedron Lett 32:7525–7528

    CAS  Article  Google Scholar 

  16. 16.

    Ji Y, Brückl T, Baxter RD, Fujiwara Y, Seiple IB, Su S, Blackmond DG, Baran PS (2011) Proc Natl Acad Sci USA 108:14411–14415

    CAS  Article  Google Scholar 

  17. 17.

    Fujiwara Y, Dixon JA, Rodriguez RA, Baxter RD, Dixon DD, Collins MR, Blackmond DG, Baran PS (2012) J Am Chem Soc 134:1494–1497

    CAS  Article  Google Scholar 

  18. 18.

    Fujiwara Y, Dixon JA, O’Hara F, Funder ED, Dixon DD, Rodriguez RA, Baxter RD, Herle B, Sach N, Collins MR, Ishihara Y, Baran PS (2012) Nature 492:95–99

    CAS  Article  Google Scholar 

  19. 19.

    O’Brien AG, Maruyama A, Inokuma Y, Fujita M, Baran PS, Blackmond DG (2014) Angew Chem Int Ed 53:11868–11871

    Article  Google Scholar 

  20. 20.

    O’Brien AG, Luca OR, Baran PS, Blackmond DG (2016) React Chem Eng 1:90–95

    Article  Google Scholar 

  21. 21.

    Zhou L, Tang S, Qi X, Lin C, Liu K, Liu C, Lan Y, Lei A (2014) Org Lett 16:3404–3407

    CAS  Article  Google Scholar 

  22. 22.

    Fischer H (2011) Chem Rev 101:3581–3610

    Article  Google Scholar 

  23. 23.

    Liu D, Li Y, Qi X, Liu C, Lan Y, Lei A (2015) Org Lett 17:998–1001

    CAS  Article  Google Scholar 

  24. 24.

    Huang Z, Zhang D, Qi X, Yan Z, Wang M, Yan H, Lei A (2016) Org Lett 18:2351–2354

    CAS  Article  Google Scholar 

  25. 25.

    Tang S, Liu K, Long Y, Qi X, Lan Y, Lei A (2015) Chem Commun 51:8769–8772

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ryan D. Baxter.

Additional information

This minireview is dedicated to Professor Donna G. Blackmond on the occasion of her receiving the Gabor A. Samorjai Award for Creative Research in Catalysis from the American Chemical Society.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mai, D.N., Baxter, R.D. Experimental Strategies for Controlling Radical Chain Reactions. Top Catal 60, 580–588 (2017). https://doi.org/10.1007/s11244-017-0734-z

Download citation

Keywords

  • Heterogeneous
  • Radical
  • Phase-transfer
  • Reactive intermediates