Topics in Catalysis

, Volume 60, Issue 1–2, pp 171–177 | Cite as

Promoting Effect of Co, Cu, Cr and Fe on Activity of Ni-Based Alloys in Catalytic Processing of Chlorinated Hydrocarbons

  • Yuri I. BaumanEmail author
  • Ilya V. Mishakov
  • Aleksey A. Vedyagin
  • Aleksandr V. Rudnev
  • Pavel E. Plyusnin
  • Yury V. Shubin
  • Roman A. Buyanov
Original Paper


A series of sponge-like Ni1−x M x (M = Cu, Co, Cr, Fe; x = 0.00–0.10) alloys was prepared via synthetic routes with subsequent reduction in H2 atmosphere at 800–1000 °C. Formation of Ni-based solid solutions with face-cantered cubic (fcc) lattice of nickel was proven by X-ray diffraction analysis for all prepared samples. Ni1−x M x alloys were explored as precursors for self-organizing catalysts active in processing of 1,2-dichloroethane into carbon nanomaterial (CNM). According to kinetic studies of CNM growth performed at 600 °C, the catalytic activity of Ni1−x M x samples changes as follows: Cr > Co–Cu ≫ Fe. Ni–Cr sample showed rather stable performance during 4 h whereas Ni–Co, Ni–Cu and Ni (reference) samples underwent rapid deactivation after ~150 min of reaction. The presence of the residual amount of Cr (0.5 at.%) found by energy dispersive X-ray microanalysis method in the composition of active Ni particles responsible for the growth of CNM is considered to be a key factor providing the stable catalytic performance. The obtained carbon product is represented by well-ordered segmented fibers (0.4–0.8 μm in diameter) and characterized with comparatively high textural parameters (surface area 290–330 m2/g, pore volume 0.43–0.57 cm3/g).


Chlorinated hydrocarbons Catalytic decomposition Nickel and its alloys Metal dusting Segmented carbon fibers 1,2-Dichloroethane Self-organizing catalysts 



This work was supported by Russian Academy of Sciences and Federal Agency of Scientific Organizations (Project V.45.3.5) and RFBR (Research Project No. 14-03-00411-a). Authors are thankful to A.N. Serkova for assistance in studies of carbon product morphology by scanning electron microscopy.


  1. 1.
    Fasi A, Hannus I, Halasz J, Palinko I (2012) Top Catal 55:853–857CrossRefGoogle Scholar
  2. 2.
    Lien HL, Zhang WX (2007) Appl Catal B 77:110–116CrossRefGoogle Scholar
  3. 3.
    Xia CH, Liu Y, Zhou SW, Yang CY, Liu SJ, Xu J, Yu JB, Chen JP, Liang XM (2009) J Hazard Mater 169:1029–1033CrossRefGoogle Scholar
  4. 4.
    Ma X, Liu Y, Liu S, Xia C (2014) Appl Catal B 144:580–587CrossRefGoogle Scholar
  5. 5.
    Mishakov IV, Chesnokov VV, Buyanov RA, Pakhomov NA (2001) Kinet Catal 42:598–603CrossRefGoogle Scholar
  6. 6.
    Mishakov IV, Buyanov RA, Chesnokov VV (2002) Catal Ind 4:33–39Google Scholar
  7. 7.
    Bauman YI, Mishakov IV, Vedyagin AA, Buyanov RA, Volodin AM (2011) Kinet Catal 52:547–554CrossRefGoogle Scholar
  8. 8.
    Bauman YI, Mishakov IV, Vedyagin AA, Dmitriev SV, Melgunov MS, Buyanov RA (2012) Catal Ind 4:261–266CrossRefGoogle Scholar
  9. 9.
    Grabke HJ (2003) Mater Corros 54:736–744CrossRefGoogle Scholar
  10. 10.
    Li D, Chen J, Li Y (2009) Int J Hydrogen Energy 34:299–307CrossRefGoogle Scholar
  11. 11.
    Pinilla JL, Suelves I, Lázaro MJ, Moliner R, Palacios JM (2010) Int J Hydrogen Energy 35:9801–9809CrossRefGoogle Scholar
  12. 12.
    Podyacheva OY, Ismagilov ZR, Shalagina AE, Ushakov VA, Shmakov AN, Tsybulya SV, Kriventsov VV, Ischenko AV (2010) Carbon 48:2792–2801CrossRefGoogle Scholar
  13. 13.
    Rudnev AV, Lysakova AS, Plyusnin PE, Bauman YI, Shubin YV, Mishakov IV, Vedyagin AA, Buyanov RA (2014) Inorg Mater 50:566–571CrossRefGoogle Scholar
  14. 14.
    Kraus W, Nolze G (2000) POWDERCELL 2.4, program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Federal Institute for Materials Research and Testing, BerlinGoogle Scholar
  15. 15.
    Powder diffraction file. PDF-2/Release 2009: International Centre for Diffraction Data, USAGoogle Scholar
  16. 16.
    The Pauling file inorganic materials database and design system–binaries edition, ASM International, Ohio, 2002Google Scholar
  17. 17.
    Bauman YI, Lysakova AS, Rudnev AV, Mishakov IV, Shubin YV, Vedyagin AA, Buyanov RA (2014) Nanotechnol Russia 9:380–385CrossRefGoogle Scholar
  18. 18.
    Chang JK, Tsai HY, Tsai WT (2008) Int J Hydrogen Energy 33:6734–6742CrossRefGoogle Scholar
  19. 19.
    Chen CS, Lin JH, You JH, Yang KH (2010) J Phys Chem A 114:3773–3781CrossRefGoogle Scholar
  20. 20.
    Chen CS, Lin JH, Lin AS, Huang HT, Ma HL (2008) Carbon 46:369–371CrossRefGoogle Scholar
  21. 21.
    Chun CM, Ramanarayanan TA (2005) Electrochem Soc 152:169–177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yuri I. Bauman
    • 1
    Email author
  • Ilya V. Mishakov
    • 1
    • 2
  • Aleksey A. Vedyagin
    • 1
    • 2
  • Aleksandr V. Rudnev
    • 3
  • Pavel E. Plyusnin
    • 3
    • 4
  • Yury V. Shubin
    • 3
    • 4
  • Roman A. Buyanov
    • 1
  1. 1.Boreskov Institute of Catalysis SB RASNovosibirskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations