Electron-Scavenging Chemistry of Benzoquinone on TiO2(110)

Abstract

The chemistry of benzoquinone (BQ) on TiO2(110) was examined using temperature programmed desorption (TPD), electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES). BQ adsorbs mostly molecularly on the clean surface, although EELS demonstrates that electrons from surface Ti3+ at oxygen vacancy sites (VO) are readily oxidized by the molecule. In contrast, when the surface is covered with water, subsequently adsorbed BQ molecules that scavenge surface electrons also abstract H from surface bridging OH (OHb) groups to form hydroquinone (HQ), which desorbs at ~450 K. The ability of BQ to scavenge electrons from TiO2 also accounts for the formation of coupling products that accumulate on the surface as very stable carbon deposits, likely as polymerized aromatics.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3

References

  1. 1.

    Henderson MA (2011) Surf Sci Rep 66:185

    CAS  Article  Google Scholar 

  2. 2.

    Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:33

    CAS  Article  Google Scholar 

  3. 3.

    Tatsuma T, Tachibana S, Fujishima A (2001) J Phys Chem B 105:6987

    CAS  Article  Google Scholar 

  4. 4.

    Mills A, Hodgen S, Lee SK (2005) Res Chem Intermed 31:295

    CAS  Article  Google Scholar 

  5. 5.

    Theurich J, Lindner M, Bahnemann DW (1996) Langmuir 12:6368

    CAS  Article  Google Scholar 

  6. 6.

    Yamazaki S, Fujiwara Y, Yabuno S, Adachi K, Honda K (2012) Appl Catal B-Environ 121:148

    Article  Google Scholar 

  7. 7.

    Silva AMT, Silva CG, Drazic G, Faria JL (2009) Catal Today 144:13

    CAS  Article  Google Scholar 

  8. 8.

    Richard C, Boule P (1994) New J Chem 18:547

    CAS  Google Scholar 

  9. 9.

    Al-Sayyed G, D’Oliveira J-C, Pichat P (1991) J Photochem Photobiol A 58:99

    CAS  Article  Google Scholar 

  10. 10.

    Mills A, Morris S, Davies R (1993) J Photochem Photobiol 70:183

    CAS  Article  Google Scholar 

  11. 11.

    Sobczynski A, Duczmal L, Zmudzinski W (2004) J Mol Catal 213:225

    CAS  Article  Google Scholar 

  12. 12.

    Wang XQ, So L, Su R, Wendt S, Hald P, Mamakhel A, Yang CX, Huang YD, Iversen BB, Besenbacher F (2014) J Catal 310:100

    CAS  Article  Google Scholar 

  13. 13.

    Ilisz I, Dombi A (1999) Appl Catal 180:35

    CAS  Article  Google Scholar 

  14. 14.

    Pelizzetti E, Minero C, Borgarello E, Tinucci L, Serpone N (1993) Langmuir 9:2995

    CAS  Article  Google Scholar 

  15. 15.

    Teoh WY, Madler L, Amal R (2007) J Catal 251:271

    CAS  Article  Google Scholar 

  16. 16.

    d’Hennezel O, Pichat P, Ollis DF (1998) J Photochem Photobiol 118:197

    Article  Google Scholar 

  17. 17.

    Fu QA, Yang JL, Wang XB (2011) J Phys Chem A 115:3201

    CAS  Article  Google Scholar 

  18. 18.

    Cooper CD, Naff WT, Compton RN (1975) J Chem Phys 63:2752

    CAS  Article  Google Scholar 

  19. 19.

    Holroyd RA (1982) J Phys Chem 86:3541

    CAS  Article  Google Scholar 

  20. 20.

    Heinis T, Chowdhury S, Scott SL, Kebarle P (1988) J Am Chem Soc 110:400

    CAS  Article  Google Scholar 

  21. 21.

    Chowdhury S, Heinis T, Grimsrud EP, Kebarle P (1986) J Phys Chem 90:2747

    CAS  Article  Google Scholar 

  22. 22.

    Richard C (1994) New J Chem 18:443

    CAS  Google Scholar 

  23. 23.

    Makhal A, Sarkar S, Bora T, Baruah S, Dutta J, Raychaudhuri AK, Pal SK (2010) J Phys Chem C 114:10390

    CAS  Article  Google Scholar 

  24. 24.

    Idriss H, Barteau MA (1994) Langmuir 10:3693

    CAS  Article  Google Scholar 

  25. 25.

    Henderson MA, Epling WS, Peden CHF, Perkins CL (2003) J Chem B 107:534

    CAS  Article  Google Scholar 

  26. 26.

    Zehr RT, Henderson MA (2008) Surf Sci 602:1507

    CAS  Article  Google Scholar 

  27. 27.

    Diebold U (2003) Surf Sci Rep 48:53

    CAS  Article  Google Scholar 

  28. 28.

    Stanton JF, Sattelmeyer KW, Gauss J, Allan M, Skalicky T, Bally T (2001) J Chem Phys 115:1

    CAS  Article  Google Scholar 

  29. 29.

    Li SC, Wang JG, Jacobson P, Gong XQ, Selloni A, Diebold U (2009) J Am Chem Soc 131:980

    CAS  Article  Google Scholar 

  30. 30.

    Henderson MA, White JM, Uetsuka H, Onishi H (2003) J Am Chem Soc 125:14974

    CAS  Article  Google Scholar 

  31. 31.

    Henderson MA, Shen MM, Wang ZT, Lyubinetsky I (2013) J Phys Chem C 117:5774

    CAS  Article  Google Scholar 

  32. 32.

    Allan M (1984) Chem Phys 84:311

    CAS  Article  Google Scholar 

  33. 33.

    Bigelow RW (1978) J Chem Phys 68:5086

    CAS  Article  Google Scholar 

  34. 34.

    Trommsdorff HP (1967) Chem Phys Lett 1:214

    CAS  Article  Google Scholar 

  35. 35.

    Terhorst G, Kommandeur J (1979) Chem Phys 44:287

    CAS  Article  Google Scholar 

  36. 36.

    Trommsdorff HP (1971) Chem Phys Lett 10:176

    CAS  Article  Google Scholar 

  37. 37.

    Trommsdorff HP (1972) J Chem Phys 56:5358

    CAS  Article  Google Scholar 

  38. 38.

    Pou-Amerigo R, Merchan M, Orti E (1999) J Chem Phys 110:9536

    CAS  Article  Google Scholar 

  39. 39.

    Honda Y, Hada M, Ehara M, Nakatsuji H (2002) J Phys Chem A 106:3838

    CAS  Article  Google Scholar 

  40. 40.

    Zhao XJ, Imahori H, Zhan CG, Sakata Y, Iwata S, Kitagawa T (1997) J Phys Chem A 101:622

    CAS  Article  Google Scholar 

  41. 41.

    Zamadar M, Cook AR, Lewandowska-Andralojc A, Holroyd R, Jiang Y, Bikalis J, Miller JR (2013) J Phys Chem A 117:8360

    CAS  Article  Google Scholar 

  42. 42.

    Barone V, Improta R, Morelli G, Santoro F (2007) Theoret Chem Acc 118:143

    CAS  Article  Google Scholar 

  43. 43.

    Cheng HY, Huang YS (2014) Phys Chem Chem Phys 16:26306

    CAS  Article  Google Scholar 

  44. 44.

    Szczepankiewicz SH, Moss JA, Hoffmann MR (2002) J Phys Chem B 106:2922

    CAS  Article  Google Scholar 

  45. 45.

    Szczepankiewicz SH, Moss JA, Hoffmann MR (2002) J Phys Chem B 106:7654

    CAS  Article  Google Scholar 

  46. 46.

    Kimmel GA, Petrik NG (2008) Phys Rev Lett 100:196102

    Article  Google Scholar 

  47. 47.

    Epling WS, Peden CHF, Henderson MA, Diebold U (1998) Surf Sci 412(13):333

    Article  Google Scholar 

  48. 48.

    Henderson MA, Epling WS, Perkins CL, Peden CHF, Diebold U (1999) J Phys Chem B 103:5328

    CAS  Article  Google Scholar 

  49. 49.

    Shen MM, Henderson MA (2012) J Phys Chem C 116:18788

    CAS  Article  Google Scholar 

  50. 50.

    Henderson MA (1996) Surf Sci 355:151

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael A. Henderson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henderson, M.A., Shen, M. Electron-Scavenging Chemistry of Benzoquinone on TiO2(110). Top Catal 60, 440–445 (2017). https://doi.org/10.1007/s11244-016-0707-7

Download citation

Keywords

  • Benzoquinone
  • Rutile TiO2(110)
  • Temperature programmed desorption
  • Electron scavenging
  • Photocatalysis