Skip to main content
Log in

Atomic-Resolution HAADF-STEM Study of Ag/Al2O3 Catalysts for Borrowing-Hydrogen and Acceptorless Dehydrogenative Coupling Reactions of Alcohols

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We study HAADF-STEM analysis of Ag/Al2O3 samples (as-calcined and reduced at 25, 300, 500 and 900 °C). Ag atoms are classified into subnanoclusters (0.3–1 nm), nanoclusters (1–3 nm), nanoparticles (3–10 nm) and polycrystals (>10 nm). The size of Ag increases with the reduction temperature, which is supported by EXAFS analysis. The effect of Ag size on the activity for borrowing-hydrogen and acceptorless dehydrogenative couplings of alcohols is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gunanathan C, Milstein D (2013) Science 341:1229712

    Article  Google Scholar 

  2. Fujita K, Yamaguchi R (2005) Synlett 4:560–571

    Google Scholar 

  3. Obora Y (2014) ACS Catal 4:3972–3981

    Article  CAS  Google Scholar 

  4. Shimizu K (2015) Catal Sci Technol 5:1412–1427

    Article  CAS  Google Scholar 

  5. Shimizu K, Sugino K, Satsuma A (2009) Chem Eur J 15:2341–2351

    Article  CAS  Google Scholar 

  6. Shimizu K, Ohshima K, Satsuma A (2009) Chem Eur J 15:9977–9980

    Article  CAS  Google Scholar 

  7. Shimizu K, Sato R, Satsuma A (2009) Angew Chem Int Ed 48:3982–3986

    Article  CAS  Google Scholar 

  8. Shimizu K, Nishimura M, Satsuma A (2009) ChemCatChem 1:497–503

    Article  CAS  Google Scholar 

  9. Shimizu K, Sawabe K, Satsuma A (2009) Catal Sci Technol 1:331–341

    Article  Google Scholar 

  10. Hammer B, Nørskov JK (1995) Surf Sci 343:211–220

    Article  CAS  Google Scholar 

  11. Arve K, Svennerberg K, Klingstedt F, Eränen K, Wallenberg LR, Bovin JO, Čapek L, Murzin DY (2006) J Phys Chem B 110:420–427

    Article  CAS  Google Scholar 

  12. Kannisto H, Arve K, Pingel T, Hellman A, Härelind H, Eränen K, Olsson E, Skoglundh M, Murzin DY (2013) Catal Sci Technol 3:644–653

    Article  CAS  Google Scholar 

  13. Shimizu K, Miyamoto Y, Satsuma A (2010) J Catal 270:86–94

    Article  CAS  Google Scholar 

  14. Su DS, Zhang B, Schlögl R (2015) Chem Rev 115:2818–2882

    Article  CAS  Google Scholar 

  15. Sohlberg K, Pennycook TJ, Zhou W, Pennycook SJ (2015) Phys Chem Chem Phys 17:3982–4006

    Article  CAS  Google Scholar 

  16. Yang X, Wang A, Qiao B, Li J, Liu J, Zhang T (2013) Acc Chem Res 46:1740–1748

    Article  CAS  Google Scholar 

  17. Zhang B, Zhang W, Su DS (2011) ChemCatChem 3:965–968

    Article  Google Scholar 

  18. Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331–1335

    Article  CAS  Google Scholar 

  19. Pennycook SJ, Jesson DE (1991) Ultramicroscope 37:14–37

    Article  Google Scholar 

  20. Boyes ED, Ward MR, Lari L, Gai PL (2013) Ann Phys (Berlin) 525:423–429

    Article  CAS  Google Scholar 

  21. Yamamoto Y, Arai S, Esdaki A, Ohyama J, Satsuma A, Tanaka N (2014) Microscopy 63:209–218

    Article  CAS  Google Scholar 

  22. Batson PE (2008) Microsc Microanal 14:89–97

    Article  CAS  Google Scholar 

  23. Yoshida K, Tominaga T, Hanatani T, Tagami A, Sasaki Y, Yamasaki J, Saitoh K, Tanaka N (2013) Microscope 62:571–582

    Article  CAS  Google Scholar 

  24. Yoshida K, Bright A, Tanaka N (2012) J Electron Microsc 61:99–103

    Article  CAS  Google Scholar 

  25. Yoshida K, Zhang X, Bright AN, Saitoh K, Tanaka N (2013) Nanotechnology 24:065705

    Article  Google Scholar 

  26. Adrian M, Dubochet J, Lepault J, Mcdowall AW (1998) Nature 308:32–36

    Article  Google Scholar 

  27. Sueda S, Yoshida K, Tanaka N (2010) Ultramicroscope 110:1120–1127

    Article  CAS  Google Scholar 

  28. Hernandez-Garrido Yoshida K, Gai PL, Boyes ED, Christensen CH, Midgley PA (2011) Catal Today 160:165–169

    Article  CAS  Google Scholar 

  29. Yoshida K, Makihara M, Tanaka N, Aoyagi S, Nishibori E, Sakata M, Boyes ED, Gai PL (2011) Microsc Microanal 17:264–273

    Article  CAS  Google Scholar 

  30. Yoshida K, Ikuhara YH, Takahashi S, Hirayama T, Saito T, Sueda S, Tanaka N, Gai PL (2009) Nanotechnology 20:315703

    Article  Google Scholar 

  31. Shimizu K, Sugino K, Kato K, Yokota S, Okumura K, Satsuma A (2007) J Phys Chem C 111:1683–1688

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aids for Scientific Research B (26289299) from MEXT (Japan), a MEXT program “Elements Strategy Initiative to Form Core Research Center” and a Grant-in-Aid for Scientific Research on Innovative Areas “Nano Informatics” (25106010) from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Shimizu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, K., Kon, K. & Shimizu, Ki. Atomic-Resolution HAADF-STEM Study of Ag/Al2O3 Catalysts for Borrowing-Hydrogen and Acceptorless Dehydrogenative Coupling Reactions of Alcohols. Top Catal 59, 1740–1747 (2016). https://doi.org/10.1007/s11244-016-0695-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0695-7

Keywords

Navigation