Skip to main content
Log in

Reactivity of Hydrosilanes with the CrII/SiO2 Phillips Catalyst: Observation of Intermediates and Properties of the Modified CrII Sites

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The reaction of hydrosilanes (both silane and triethylsilane) with CrII/SiO2 catalyst has been investigated in detail by analysis of the gaseous by-products, temperature- and pressure- resolved FT-IR spectroscopy and deuterium exchanges. We found that the reaction proceeds via two steps, passing through intermediates characterized by elongated Si–H bonds and transient Cr-hydride species leading to the release of H2 in the gas phase. These experimental evidence allowed us to advance an hypothesis of the reaction mechanism, which validates our previous proposal for the structure of the modified chromium sites. Furthermore, based on the intermediates of the reaction mechanism, we have also tested the ability of the modified “homogeneous-like” CrII sites toward H2 (D2) activation, demonstrating that, contrarily to the unmodified CrII species, such reactivity is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Komon ZJA, Bazan GC (2001) Macromol Rapid Commun 22:467

    Article  CAS  Google Scholar 

  2. McGuinness DS (2011) Chem Rev 111:2321

    Article  CAS  Google Scholar 

  3. de Wet-Roos D, Dixon JT (2004) Macromolecules 37:9314

    Article  Google Scholar 

  4. Ye ZB, AlObaidi F, Zhu SP (2004) Macromol Rapid Commun 25:647

    Article  CAS  Google Scholar 

  5. Alobaidi F, Ye ZB, Zhu SP (2004) J Polym Sci Part A 42:4327

    Article  CAS  Google Scholar 

  6. Zhang J, Li B-G, Fan H, Zhu S (2007) J Polym Sci Part A 45:3562

    Article  CAS  Google Scholar 

  7. Zhang J, Fan H, Li B-G, Zhu SP (2008) Ind Eng Chem Res 47:5369

    Article  CAS  Google Scholar 

  8. Schwerdtfeger ED, Price CJ, Chai J, Miller SA (2010) Macromolecules 43:4838

    Article  CAS  Google Scholar 

  9. Pettijohn TM, Reagen WK, Martin SJ (1994) US Patent 5331070

  10. Manyik RM, Walker WE, Wilson TP (1977) J Catal 47:197

    Article  CAS  Google Scholar 

  11. Pellecchia C, Pappalardo D, Gruter GJ (1999) Macromolecules 32:4491

    Article  CAS  Google Scholar 

  12. Pellecchia C, Pappalardo D, Oliva L, Mazzeo M, Gruter GJ (2000) Macromolecules 33:2807

    Article  CAS  Google Scholar 

  13. McDaniel MP (2010) Adv Catal 53:123

    CAS  Google Scholar 

  14. Benham EA, McDaniel M, Bailey FW (1990) US. Patent 4966951

  15. Benham EA, McDaniel M, McElvain RR, and Schneider, RO (1991) US. Patent 50719271991

  16. Benham EA, McDaniel M, and Bailey FW (1992) US Patent 5115068

  17. McDaniel M, Benham EA (1993) US Patent 5274056

  18. Cicmil D, Meeuwissen J, Vantomme A, Wang J, van Ravenhorst IK, van der Bij HE, Munoz-Murillo A, Weckhuysen BM (2015) Angew Chem Int Ed 54:13073

    Article  CAS  Google Scholar 

  19. Barzan C, Gianolio D, Groppo E, Lamberti C, Monteil V, Quadrelli EA, Bordiga S (2013) Chem.-Eur. J. 19:17277

    Article  CAS  Google Scholar 

  20. Damin A, Bonino F, Bordiga S, Groppo E, Lamberti C, Zecchina A (2006) Chem Phys Chem 7:342

    CAS  Google Scholar 

  21. Groppo E, Lamberti C, Bordiga S, Spoto G, Zecchina A (2005) Chem Rev 105:115–183

    Article  CAS  Google Scholar 

  22. Groppo E, Damin A, Bonino F, Zecchina A, Bordiga S, Lamberti C (2005) Chem Mater 17:2019

    Article  CAS  Google Scholar 

  23. Weckhuysen BM, Wachs IE, Schoonheydt RA (1996) Chem Rev 96:3327

    Article  CAS  Google Scholar 

  24. Zecchina A, Garrone E, Ghiotti G, Morterra C, Borello E (1975) J Phys Chem 79:966

    Article  CAS  Google Scholar 

  25. Schmidt J, Stuhlmann C, Ibach H (1994) Phys Rev 302:10

    CAS  Google Scholar 

  26. Parson GN, Lucovsky (1990) Phys Rev 41:1664

    Article  Google Scholar 

  27. Tanaka K, Choo C, Komatsu Y, Hamaguchi K (2004) J Phys Chem B 108:2501

    Article  CAS  Google Scholar 

  28. Barzan C, Groppo E, Quadrelli EA, Monteil V, Bordiga S (2012) Phys Chem Chem Phys 14:2239

    Article  CAS  Google Scholar 

  29. Lamberti C, Groppo E, Spoto G, Bordiga S, Zecchina A (2007) Adv Catal 51:1

    CAS  Google Scholar 

  30. Lamberti C, Zecchina A, Groppo E, Bordiga S (2010) Chem Soc Rev 39:4951

    Article  CAS  Google Scholar 

  31. Groppo E, Lamberti C, Bordiga S, Spoto G, Zecchina A (2005) J Phys Chem B 109:15024

    Article  CAS  Google Scholar 

  32. Groppo E, Lamberti C, Bordiga S, Spoto G, Zecchina A (2006) J Catal 240:172

    Article  CAS  Google Scholar 

  33. Groppo E, Estephane J, Lamberti C, Spoto G, Zecchina A (2007) Catal Today 126:228

    Article  CAS  Google Scholar 

  34. Bordiga S, Bertarione S, Damin A, Prestipino C, Spoto G, Lamberti C, Zecchina A (2003) J Mol Catal A 204:527

    Article  Google Scholar 

  35. Wang X, Andrews L (2008) J Am Chem Soc 130:6766

    Article  CAS  Google Scholar 

  36. Wang XF, Andrews L (2003) J Phys Chem A 107:570

    Article  CAS  Google Scholar 

  37. Nikonov GI (2005) Adv Organomet Chem 53:217

    CAS  Google Scholar 

  38. Avenier P, Lesage A, Taoufik M, Baudouin A, De Mallmann A, Fiddy S, Vautier M, Veyre L, Basset J-M, Emsley L, Quadrelli EA (2007) J Am Chem Soc 129:176

    Article  CAS  Google Scholar 

  39. Lin Z (2007) Coord Chem Rev 251:2280

    Article  CAS  Google Scholar 

  40. Perutz RN, Sabo-Etienne S (2007) Angew Chem Int Ed 46:2578

    Article  CAS  Google Scholar 

  41. Waterman R (2013) Organometallics 32:7249

    Article  CAS  Google Scholar 

  42. Stahl T, Hrobarik P, Koenigs CDF, Ohki Y, Tatsumi K, Kemper S, Kaupp M, Klare HFT, Oestreich M (2015) Chemical Science 6:4324

    Article  CAS  Google Scholar 

  43. Coutant B, Quignard F, Choplin A (1995) J Chem Soc, Chem Commun 2:137

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the organizing committee of ISHHC Conference held in Utrecht in July 2015. The laboratory COMS and LCPP in Lyon are kindly acknowledged for the support in the collection of gas-chromatographic data. This work has been supported by the Progetto di Ateneo/CSP 2014 (Torino_call2014_L1_73) and by the Grant VINCI from Université Franco-Italienne.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elsje Alessandra Quadrelli or Elena Groppo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzan, C., Bordiga, S., Quadrelli, E.A. et al. Reactivity of Hydrosilanes with the CrII/SiO2 Phillips Catalyst: Observation of Intermediates and Properties of the Modified CrII Sites. Top Catal 59, 1732–1739 (2016). https://doi.org/10.1007/s11244-016-0694-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0694-8

Keywords

Navigation