Topics in Catalysis

, Volume 59, Issue 17–18, pp 1545–1553 | Cite as

Improved Supported Metal Oxides for the Oxidative Dehydrogenation of Propane

  • Joseph T. Grant
  • Alyssa M. Love
  • Carlos A. Carrero
  • Fangying Huang
  • Jesse Panger
  • René Verel
  • Ive HermansEmail author
Original Paper


The oxidative dehydrogenation of propane (ODHP) is an attractive reaction for the on-purpose production of propylene. Unfortunately, rapid consecutive over-oxidation of the desired olefin limits the selectivity and hampers the industrial feasibility. Supported metal oxides, and in particular dispersed vanadium-containing materials, have shown promising results. Yet one has to improve both the selectivity and activity (space–time–yield) to make this reaction attractive. In this contribution we build upon our previous work that allowed us to increase the dispersion of group V metal oxides on silica using a sodium promoter. Using Raman spectroscopy and 51V MAS NMR, we postulate that the minor decrease in our observed turnover frequency (TOF) for ODHP using sodium-promoted materials may be due to Na+ ions weakly interacting with the V=O site, responsible for the initial H-atom abstraction. While our observed TOF is well within the range of literature reported TOF for these materials, such a large deviation in reported TOF (varying almost three orders of magnitude) may be due to various impurities used in the silica of these previously reported studies. Subsequently, we prepared a ternary metal oxide catalyst based on vanadium and tantalum that shows superior selectivity and productivity. Indeed, productivity of a combined V- and Ta-oxide catalyst supported on silica doubles the productivity of catalysts with low loadings of vanadium oxide supported on silica. The reasons for the significant improvement are currently under investigation.


Oxidative dehydrogenation Propylene Dispersion Vanadium Tantalum 



The authors acknowledge financial support from the University of Wisconsin-Madison, as well as the Wisconsin Alumni Research Foundation (WARF). Martin Martinez is acknowledged for his help with surface area measurements.


  1. 1.
    Rightor EG, Tway CL (2015) Catal Today 258:226–229CrossRefGoogle Scholar
  2. 2.
    The Rising Competitive Advantage of US Plastics (2015) Economics and Statistics Department American Chemistry Council. Accessed 15 Oct 2015
  3. 3.
    Trends in Refining (2009) UOP LLC, PedroTech, New Delhi, IndiaGoogle Scholar
  4. 4.
    Sattler J, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Chem Rev 114:10613–10653CrossRefGoogle Scholar
  5. 5.
    Cavani F, Ballarini N, Cericola A (2007) Catal Today 127:113–131CrossRefGoogle Scholar
  6. 6.
    Carrero CA, Schloegl R, Wachs IE, Schomaecker R (2014) ACS Catal 4:3357–3380CrossRefGoogle Scholar
  7. 7.
    Schwartz O, Habel D, Otsiter O, Kondratenko EV, Hess C, Schomaecker R, Schubert H (2008) J Mol Catal A Chem 293:45–52CrossRefGoogle Scholar
  8. 8.
    Carrero CA, Keturakis C, Orrego A, Schomaecker R, Wachs IE (2013) Dalton Trans 42:12644–12653CrossRefGoogle Scholar
  9. 9.
    Kondratenko EV, Cherian M, Baerns M (2006) Catal Today 112:60–63CrossRefGoogle Scholar
  10. 10.
    Kondratenko EV, Cherian M, Baerns M, Su D, Schloegl R, Xiang W, Wachs IE (2005) J Catal 234:131–142CrossRefGoogle Scholar
  11. 11.
    Takehira K, Oshishi Y, Shishido T, Kawabata T, Takaki K, Zhang Q, Wang Y (2014) J Catal 224:404–416CrossRefGoogle Scholar
  12. 12.
    Shishido T, Shimamura K, Teramura K, Tanaka T (2012) Catal Today 185:151–156CrossRefGoogle Scholar
  13. 13.
    Chen K, Bell AT, Iglesia E (2000) J Phys Chem B 104:1292–1299CrossRefGoogle Scholar
  14. 14.
    Argyl MD, Chen K, Bell AT, Iglesia E (2002) J Catal 208:139–149CrossRefGoogle Scholar
  15. 15.
    Malleswara RTV, Deo G (2007) AIChE 53:1538–1549CrossRefGoogle Scholar
  16. 16.
    Dinse A, Frank B, Hess C, Habel D, Schomaecker R (2008) J Mol Catal A Gen 289:28–37CrossRefGoogle Scholar
  17. 17.
    Carrero CA, Kauer M, Dinse A, Wolfram T, Hamilton N, Trunschke A, Schloegl R, Schomaecker R (2014) Catal Sci Technol 4:786–794CrossRefGoogle Scholar
  18. 18.
    Grant JT, Carrero CA, Love AM, Verel R, Hermans I (2015) ACS Catal 5:5787–5793CrossRefGoogle Scholar
  19. 19.
    Lemonidou AA, Nalbandian L, Vasalos I (2000) Catal Today 61:333–341CrossRefGoogle Scholar
  20. 20.
    Garcia Cortez G, Fierro JLG, Banares MA (2003) Catal Today 78:219–228CrossRefGoogle Scholar
  21. 21.
    Li Y, Wei Z, Sun J, Gao F, Peden CHF, Wang YJ (2013) J Phys Chem C 117:5722–5729CrossRefGoogle Scholar
  22. 22.
    Tian H, Ross EI, Wachs IE (2006) J Phys Chem B 110:9593–9600CrossRefGoogle Scholar
  23. 23.
    Gao X, Bare SR, Weckhuysen BM, Wachs IE (1998) J Phys Chem B 102:10842–10852CrossRefGoogle Scholar
  24. 24.
    Das N, Eckert H, Hu H, Wachs IE, Walzer JF, Feher FJ (1993) J Phys Chem 97:8240–8243CrossRefGoogle Scholar
  25. 25.
    McGregor J (2009) In: Jackson SD, Hargreaves JSJ (eds) Metal oxide catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 195–242Google Scholar
  26. 26.
    Hu JZ, Xu S, Li W, Hu MY, Deng X, Dixon DA, Vasiliu M, Cracium R, Wang Y, Bao X, Peden CHF (2015) ACS Catal 5:3945–3952CrossRefGoogle Scholar
  27. 27.
    Jehng J, Tung W, Huang C, Wachs IE (2007) Microporous Mesoporous Mater 99:299–307CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Joseph T. Grant
    • 1
  • Alyssa M. Love
    • 1
  • Carlos A. Carrero
    • 1
  • Fangying Huang
    • 1
  • Jesse Panger
    • 1
  • René Verel
    • 3
  • Ive Hermans
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Chemical and Biological EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland

Personalised recommendations