Skip to main content
Log in

Thermal and Catalytic Amidation of Stearic Acid with Ethanolamine for Production of Pharmaceuticals and Surfactants

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Thermal and catalytic amidation of stearic acid with ethanolamine in hexane was investigated using both microporous H-Beta and ZSM-5 zeolites, and mesoporous materials, H-MCM-36 and H-MCM-41, as catalysts in hexane. The main studied parameters were the catalyst structure and acidity, temperature and molar ratio of reactants. The results showed that thermal amidation of stearic acid with an equimolar ratio of ethanolamine was substantial giving 61 % conversion in 3 h. The highest conversion and selectivity to stearoylethanolamide, being 79 and 83 %, respectively, were achieved with microporous, relatively strongly acidic H-Beta-150 catalyst. Stearoylethanolamide and the corresponding esteramide were the main products. An optimum amount of Brønsted acid sites in the catalyst was required to achieve high yield and selectivity towards stearoylethanolamide. With increasing amount of Brønsted acid sites more esteramide was formed. Typically esteramide selectivity increased in the catalytic amidation of stearic acid with increasing conversion due to consecutive reactions. Low conversions were obtained, when increasing the molar ratio of stearic acid to ethanolamine. In addition, an excess of ethanolamine suppressed the reaction due to its strong adsorption on zeolite surface. An optimum reaction temperature was 180 °C. The mass transfer limitations were not fully absent in the reaction. A reaction mechanism, including both parallel and consecutive pathways was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dalle Carbonare M, Del Giudice E, Stecca A, Colavita D, Fabris M, D’Arrigo A, Bernardini D, Dam M, Leon A (2008) J Neuroendocrin 20(Suppl 1):26–34

    Article  CAS  Google Scholar 

  2. Lambert DM, Vandevoorde S, Johnsson KO, Fowler CJ (2002) Curr Med Chem 9:663–674

    Article  CAS  Google Scholar 

  3. Kuehl FA, Jacobs TA, Ganley OH, Ormond RE, Meisinger MAP (1957) J Am Chem Soc 70:5577–5578

    Article  Google Scholar 

  4. Ozben B, Erdogan O (2008) Inflamm Allergy Drug Targets 7:136–144

    Article  CAS  Google Scholar 

  5. Harvima IT, Nilsson G, Naukkarinen A, Ital G (2010) Dermatiol Venereol 145:195–204

    CAS  Google Scholar 

  6. Sarchielli P, Pini LA, Coppola F, Rossi C, Baldi A, Mancini ML, Calabresi P (2007) Neuropsyschopharmacology 32:1384–1390

    Article  CAS  Google Scholar 

  7. Romani R, Galezzi R, Rosi G, Fiorini R, Pirisinu I, Ambrosini A, Zolese G (2011) Biochimie 93:1584–1591

    Article  CAS  Google Scholar 

  8. Hamtiaux L, Masquelier J, Muccioli GG, Bouzin C, Feron O, Gallez B, Lambert DM (2012) BMC Cancer 12:92

    Article  CAS  Google Scholar 

  9. Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler D, Marks JG, Shank MDRC, Slaga TJ, Snyder PW On the safety assessment of ethanolamides as used in cosmetics. http://www.cir-safety.org/sites/default/files/amides032012FAR.pdf. Accessed 27 Mar 2012

  10. Pinazo A, Pons R, Pérez L, Infante MR (2011) Ind Eng Chem Res 50:4805–4817

    Article  CAS  Google Scholar 

  11. Venables BJ, Waggoner CA, Chapman KD (2005) Phytochemistry 66:1913–1918

    Article  CAS  Google Scholar 

  12. Sansom AJ, Williams CE (2008) WO 2008075978:A2

    Google Scholar 

  13. Lundberg H, Tinnis F, Selander N, Adolfsson H (2014) Chem Soc Rev 43:2714–2742

    Article  CAS  Google Scholar 

  14. Patil HV, Kulkarni RD, Mishra S, fosetonline. http://www.org/AGA/18-AGB_Hansraj_V_Patil.pdf. 9th all India People’s technology congress, Kolkata. Accessed 8 Feb 2003

  15. http://www.greenchemistryandcommerce.org/downloads/ACS_GCIPR_5_years_in_review.pdf. Accessed 31 May 2016

  16. Fernandez-Perez A, Otero C (2001) Enzyme Microb Technol 28:527–536

    Article  CAS  Google Scholar 

  17. Musteata M, Musteata V, Dinu A, Florea M, Hoang VT, Trong-On D, Kaliaguine S, Parvulescu VI (2007) Pure Appl Chem 79:2059–2068

    Article  CAS  Google Scholar 

  18. Kamleker RK, Tarafdar PK, Swamy MJ (2010) J Lipid Res 51:42–52

    Article  Google Scholar 

  19. Furutani T, Ooshima H, Kato J (1997) Enzyme MicrobTechnol 20:214–220

    Article  CAS  Google Scholar 

  20. Tkacheva A, Dosmagambetova I, Mäki-Arvela P, Hachemi I, Savela R, Leino R, Viegas C, Kumar N, Eränen K, Hemming J, Smeds A, Murzin DYu (2015) ChemSusChem 8(16):2670–2680

    Article  CAS  Google Scholar 

  21. Käldström M, Kumar N, Heikkilä T, Murzin DYu (2011) Appl Catal A 397:13–21

    Article  Google Scholar 

  22. Barrault J, Bancquart S, Pouilloux Y (2004) C R Chimie 7:593–599

    Article  CAS  Google Scholar 

  23. Gassama-Diagne A, Rogalle P, Fauvel J, Willson M, Klaébé A, Chap H (1992) J Bio. Chem 267:13418–13424

    CAS  Google Scholar 

  24. Käldström M, Kumar N, Heikkilä T, Tiitta M, Salmi T, Murzin DYu (2011) Biomass Bioenergy 35:1967–1976

    Article  Google Scholar 

  25. Lawton SL, Leonowicz ME, Partidge RD, Chu P, Rubin MK (1998) Microporous Mesoporous Mater 23:109–117

    Article  CAS  Google Scholar 

  26. Kresge T, Leonovicz ME, Roth WJ, Vartuli JC (1992) US patent 5098684

  27. Mäki-Arvela P, Kumar N, Nieminen V, Sjöholm R, Salmi T, Murzin DYu (2004) J Catal 225:155–169

    Article  Google Scholar 

  28. Emeis CA (1993) J Catal 141:347–354

    Article  CAS  Google Scholar 

  29. Guo W, Xiong C, Huang L, Li Q (2001) J Mater Chem 11:1886–1890

    Article  CAS  Google Scholar 

  30. He YJ, Nivarthy GS, Eder F, Seshan K, Lercher JA (1998) Microporous Mesoporous Mater 25:207–224

    Article  CAS  Google Scholar 

  31. Kumar N, Lindfors L-E (1996) Catal Lett 38:239–244

    Article  CAS  Google Scholar 

  32. Villegas JI, Kumar N, Heikkilä T, Lehto VP, Salmi T, Murzin DYu (2007) Top Catal 45:187–190

    Article  CAS  Google Scholar 

  33. Kumar N, Mäki-Arvela P, Diaz SF, Aho A, Demidova Y, Linden J, Shepidchenko A, Tenhu M, Salonen J, Laukkanen P, Lashkul A, Dahl J, Sinev I, Leino AR, Kordas K, Salmi T, Murzin DY (2013) Top Catal 56:696–713

    Article  CAS  Google Scholar 

  34. Bolis V, Busco C (2006) J Phys Chem B 110:14849–14859

    Article  CAS  Google Scholar 

  35. Jones AJ, Carr RT, Zones SI, Iglesia E (2014) J Catal 312:58–68

    Article  CAS  Google Scholar 

  36. Lilja J, Murzin DYu, Salmi T, Aumo J, Mäki-Arvela P, Sundell M (2002) J Mol Catal A 182–183:555–563

    Article  Google Scholar 

  37. Perreaux L, Loupy A, Volatron F (2002) Tetrahedron 58:2155–2162

    Article  Google Scholar 

Download references

Acknowledgments

Prof. R. Leino and Dr. R. Savela from Johan Gadolin Process Chemistry Centre at Åbo Akademi University are acknowledged from their contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Yu Murzin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mäki-Arvela, P., Tkacheva, A., Dosmagambetova, I. et al. Thermal and Catalytic Amidation of Stearic Acid with Ethanolamine for Production of Pharmaceuticals and Surfactants. Top Catal 59, 1151–1164 (2016). https://doi.org/10.1007/s11244-016-0636-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0636-5

Keywords

Navigation