Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Metathesis Reactions on Solid-Phase: Towards New Synthesis Challenges

  • 466 Accesses

  • 3 Citations

Abstract

Today there are many types of transition-metal-catalyzed carbon–carbon bond-forming reactions. Of these, the olefin metathesis has made possible a wide range of transformations with commercially available and easily handled catalysts. Olefin metathesis is widely considered as one of the most powerful synthetic tool in organic chemistry. During the last 20 years many new catalysts with excellent selectivity and efficiency have been developed, also to be used in solid phase organic chemistry protocols. The understanding of the mechanisms and interactions between the catalyst and substrate has resulted that an increasing number of research groups have employed these reactions in multistep procedures and in the synthesis of active pharmaceutical ingredients and natural products. Although the olefin metathesis reaction still proceeds better in homogeneous phase, some structural modifications of the catalyst and new approaches for immobilization have provided interesting possibilities towards more efficient use also in heterogeneous phase. To celebrate 10 years since the Nobel Prize in Chemistry given to Yves Chauvin, Richard Schrock and Robert Grubbs for the “development of the metathesis method in organic synthesis” and to summarize recent results obtained in the field of solid phase metathesis chemistry this short review was written.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    van Maarseveen JH, den Hartog JAH, Engelen V, Finner E, Visser G, Kruse CG (1996) Tetrahedron Lett 37:8249–8252

  2. 2.

    Schwab P, France MB, Ziller JW, Grubbs RH (1995) Angew Chem Int Ed Engl 34:2039–2041

  3. 3.

    Schwab P, Grubbs RH, Ziller JW (1996) J Am Chem Soc 118:100–110

  4. 4.

    Grubbs RH, Miller SJ, Fu GC (1995) Acc Chem Res 28:446–452

  5. 5.

    Veerman JJN, van Maarseveen JH, Visser GM, Kruse CG, Shoemaker HE, Hiemstra H, Rutjes FPJT (1998) Eur J Org Chem 11:2583–2589

  6. 6.

    Piscopio AD, Miller JF, Koch K (1999) Tetrahedron 55:8189–8198

  7. 7.

    Liu F, Stephen AG, Waheed AA, Freed EO, Fisher RJ, Burke TR (2010) Bioorg Med Chem Lett 20:318–321

  8. 8.

    Cuny GD, Cao J, Hauske JR (1997) Tetrahedron Lett 38:5237–5240

  9. 9.

    Maughon BR, Grubbs RH (1997) Macromolecules 30:3459–3469

  10. 10.

    Scholl M, Ding S, Lee CW, Grubbs RH (2000) Org Lett 1:953–956

  11. 11.

    Chang S, Jones L, Wang CM, Henling LM, Grubbs RH (1998) Organometallics 17:3460–3465

  12. 12.

    Glatz I, Mayr M, Hoogenboom R, Schubert US, Buchmeiser MR (2003) J Chromat A 1015:65–71

  13. 13.

    Lee BS, Mahajan S, Clapham B, Janda KD (2004) J Org Chem 69:3319–3329

  14. 14.

    Pontrello JK, Allen MJ, Underbakke ES, Kiessling LL (2005) J Am Chem Soc 127:14536–14537

  15. 15.

    Andrade RB, Plante OJ, Melean LG, Seeberger PH (1999) Org Lett 1:1811–1814

  16. 16.

    Melean LG, Haase W-C, Seeberger PH (2000) Tetrahedron Lett 41:4329–4333

  17. 17.

    Kanemitsu T, Seeberger PH (2003) Org Lett 5:4541–4544

  18. 18.

    Palmacci ER, Plante OJ, Hewitt MC, Seeberger PH (2003) Helv Chim Acta 86:3975–3989

  19. 19.

    Knerr L, Schmidt RR (1999) Synlett 11:1802–1804

  20. 20.

    Tang Q, Wareing JR (2001) Tetrahedron Lett 42:1399–1401

  21. 21.

    Knerr L, Schmidt RR (2000) Eur J Org Chem. 15:2803–2808

  22. 22.

    Timmer MSM, Verdoes M, Sliedregt LAJM, van der Marel GA, van Boom JH, Overkleeft HS (2003) J Org Chem 68:9406–9411

  23. 23.

    de Jong AR, Volbeda AG, Hagen B, van den Elst H, Overkleeft HS, van der Marel GA, Codée JDC (2013) Eur J Org Chem 29:6644–6655

  24. 24.

    Conde-Frieboes K, Andersen S, Breinholt J (2000) Tetrahedron Lett 41:9153–9156

  25. 25.

    Blackwell HE, Clemons PA, Schreiber SL (2001) Org Lett 3:1185–1188

  26. 26.

    Liao Y, Fathi R, Yang Z (2003) J Comb Chem 5:79–81

  27. 27.

    Varray S, Lazaro R, Martinez J, Lamaty F (2002) Eur J Org Chem 14:2308–2316

  28. 28.

    Barrett AGM, Henessy AJ, Vezouet R, Procopiou PA, Seale PW, Stefaniak S, Upron RJ, White JP, Williams DJ (2004) J Org Chem 69:1028–1037

  29. 29.

    Barrett AGM, Bibal B, Hopkins BT, Köbberling J, Love AC, Tedeschi L (2005) Tetrahedron 61:12033–12041

  30. 30.

    Chaleix V, Sol V, Guilloton M, Granet R, Krausz P (2004) Tetrahedron Lett 45:5295–5299

  31. 31.

    Sol V, Chaleix V, Granet R, Brausz P (2008) Tetrahedron 64:364–371

  32. 32.

    Dimartino G, Wang D, Chapman RN, Arora PS (2005) Org Lett 7:2389–2392

  33. 33.

    Concalves M, Estieu-Gionnet K, Lain G, Bayle M, Betz N (2005) Gerard Deleris Tetrahedron 61:7789–7795

  34. 34.

    Risseeuw MDP, Grotenberg GM, Witte MD, Tuin AW, Leeuwenburgh MA, Van der Marel GA, Overkleeft HS, Overhand M (2006) Eur J Org Chem 17:3877–3886

  35. 35.

    Pattabiraman VR, Stymiest JL, Derksen DJ, Martin NIM, Vederas JC (2007) Org Lett 9:699–702

  36. 36.

    Brouwer AJ, Elgersma RC, Jagodzinska M, Rijkers DTS, Liskamp RMJ (2008) Bioorg Med Chem Lett 18:78–84

  37. 37.

    Bergman YE, Del Borgo MP, Gopalan RD, Jalal S, Unabia SE, Ciampini M, Clayton DJ, Fletcher JM, Mulder RJ, Wilce JA, Aguilar M-I, Perlmutter P (2009) Org Lett 11:4438–4440

  38. 38.

    Fang W-J, Cui Y, Murray TF, Aldrich JV (2009) J Med Chem 52:5619–5625

  39. 39.

    Marcaurelle LA, Comer E, Dandapani S, Duvall JR, Gerard B, Kesavan S, Lee MD, Liu H, Lowe JT, Marie J-C, Mulrooney CA, Pandya BA, Rowley A, Ryba TD, Suh B-C, Wei J, Young DW, Akella LB, Ross NT, Zhang Y-L, Fass DM, Reis SA, Zhao W-N, Haggarty SJ, Palmer M, Foley MA (2010) J Am Chem Soc 132:16962–16976

  40. 40.

    Khan SN, Kim A, Grubbs RH, Kwon Y-U (2011) Org Lett 13:1582–1585

  41. 41.

    Baron A, Verdie P, Martinez J, Lamaty F (2011) J Org Chem 76:766–772

  42. 42.

    Garcia-Aranda MI, Marrero P, Gautier B, Martin-Martinez M, Inguimbert N, Vidal M, Garzia-Lopez MT, Jimenez MA, Gonzalez-Muniz R, de Vega MJP (2011) Bioorgan Med. Chem. 19:1978–1986

  43. 43.

    Khan SN, Kim A, Grubbs RH, Kwon Y-U (2012) Org Lett 12:2952–2955

  44. 44.

    Jida M, Betti C, Schiller PW, Tourwe D, Ballet S (2014) ACS Comb Sci 16:342–351

  45. 45.

    Cohrt AE, Nielsen TE (2014) ACS Com. Sci. 16:71–77

  46. 46.

    Chang S, Na Y, Shin HJ, Choi E, Jeong LS (2002) Tetrahedron Lett 43:7445–7448

  47. 47.

    Garner AL, Koide K (2007) Org Lett 9:5235–5238

  48. 48.

    Mendez L, Mata EG (2014) ACS Comb Sci 17:81–86

  49. 49.

    Brown RCD, Castro JL, Moriggi J-D (2000) Tetrahedron Lett 41:3681–3685

  50. 50.

    Reddy PT, Quevillon S, Gan Z, Forbes N, Leek DM, Arya P (2006) J Comb Chem 8:856–871

  51. 51.

    Testero SA, Mata EG (2006) Org Lett 8:4783–4786

  52. 52.

    Leach SG, Cordier CJ, Morton D, McKiernan GJ, Warriner S, Nelson A (2008) J Org Chem 73:2753–2759

  53. 53.

    Poeylaut-Palena AA, Mata EG (2009) J Comb Chem 11:791–794

  54. 54.

    Hill-Cousins JT, Salim SS, Bakar YM, Bellinham RK, Light ME, Brown RCD (2014) Tetrahedron 70:3700–3706

  55. 55.

    Hamad FB, Kai C, Cai Y, Xie Y, Lu Y, Ding F, Sun Y, Verpoort F (2013) Curr Org Chem 17:2592–2608

  56. 56.

    Monfette S, Eyholzer M, Roberge DM, Fogg DE (2010) Chem Eur J 16:11720–11725

  57. 57.

    Skowerski K, Pastva J, Czarnocki SJ, Janoscova J (2015) Org Process Res Dev 19:872–877

  58. 58.

    Pastva J, Skowerski K, Czarnocki SJ, Zilkova N, Cejka J, Bastl Z, Balcar H (2014) ACS Catal 4:3227–3236

  59. 59.

    Nguyen ST, Grubbs RH (1995) J Organomet Chem 497:195–200

  60. 60.

    Ahmed M, Barrett AGM, Braddock DC, Cramp PA (1999) Procopiou Tetrahedron Lett 40:8657–8662

  61. 61.

    Ahmed M, Arnauld T, Barrett AGM, Braddock DC, Procopiou PA (2000) Synlett 7:1007–1009

  62. 62.

    Jafarpour L, Nolan SP (2000) Org Lett 2:4075–4078

  63. 63.

    Jafarpour L, Heck M-P, Baylon C, Lee HM, Mioskowski S, Nolan SP (2002) Organometallics 21:671–679

  64. 64.

    Dowden J, Savovic J (2001) Chem Commun 1:37–38

  65. 65.

    Randl S, Buschmann N, Connon SJ, Blechert S (2001) Synlett 10:1547–1550

  66. 66.

    Connon SJ, Blechert S (2002) Bioorgan Med Chem Lett 12:1873–1876

  67. 67.

    Kingsbury JS, Garber SB, Giftos JM, Gray BL, Okamoto MM, Farrer RA, Fourkas JT, Hoveyda AH (2001) Angew Chem Int Ed 40:4251–4256

  68. 68.

    Yao Q (2000) Angew Chem Int Ed 39:3896–3898

  69. 69.

    Connon SJ, Dunne AM, Blechert S (2002) Angew Chem Int Ed 41:3835–3838

  70. 70.

    Connon SJ, Blechert S (2003) Angew Chem Int Ed 42:1900–1923

  71. 71.

    Grela K, Tryznowski M, Bieniek M (2002) Tetrahedron Lett 43:9055–9059

  72. 72.

    Hultzsch KC, Jernelius JA, Hoveyda AH, Schrock RR (2002) Angew Chem Int Ed 41:589–593

  73. 73.

    Michrowska A, Mennecke K, Kunz U, Kirschning A, Grela K (2006) J Am Chem Soc 128:13261–13267

  74. 74.

    Skowerski K, Czarnocki SK, Knakiewicz P (2014) ChemSusChem 7:536–542

Download references

Author information

Correspondence to Robert G. Franzen.

Additional information

This paper is dedicated to the memory of Dr. Igor Busygin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Franzen, R.G. Metathesis Reactions on Solid-Phase: Towards New Synthesis Challenges. Top Catal 59, 1143–1150 (2016). https://doi.org/10.1007/s11244-016-0635-6

Download citation

Keywords

  • Olefin metathesis
  • Heterogeneous catalysis
  • Solid supported catalyst
  • Carbon–carbon bonds