Topics in Catalysis

, Volume 59, Issue 13–14, pp 1143–1150 | Cite as

Metathesis Reactions on Solid-Phase: Towards New Synthesis Challenges

Original Paper

Abstract

Today there are many types of transition-metal-catalyzed carbon–carbon bond-forming reactions. Of these, the olefin metathesis has made possible a wide range of transformations with commercially available and easily handled catalysts. Olefin metathesis is widely considered as one of the most powerful synthetic tool in organic chemistry. During the last 20 years many new catalysts with excellent selectivity and efficiency have been developed, also to be used in solid phase organic chemistry protocols. The understanding of the mechanisms and interactions between the catalyst and substrate has resulted that an increasing number of research groups have employed these reactions in multistep procedures and in the synthesis of active pharmaceutical ingredients and natural products. Although the olefin metathesis reaction still proceeds better in homogeneous phase, some structural modifications of the catalyst and new approaches for immobilization have provided interesting possibilities towards more efficient use also in heterogeneous phase. To celebrate 10 years since the Nobel Prize in Chemistry given to Yves Chauvin, Richard Schrock and Robert Grubbs for the “development of the metathesis method in organic synthesis” and to summarize recent results obtained in the field of solid phase metathesis chemistry this short review was written.

Keywords

Olefin metathesis Heterogeneous catalysis Solid supported catalyst Carbon–carbon bonds 

References

  1. 1.
    van Maarseveen JH, den Hartog JAH, Engelen V, Finner E, Visser G, Kruse CG (1996) Tetrahedron Lett 37:8249–8252CrossRefGoogle Scholar
  2. 2.
    Schwab P, France MB, Ziller JW, Grubbs RH (1995) Angew Chem Int Ed Engl 34:2039–2041CrossRefGoogle Scholar
  3. 3.
    Schwab P, Grubbs RH, Ziller JW (1996) J Am Chem Soc 118:100–110CrossRefGoogle Scholar
  4. 4.
    Grubbs RH, Miller SJ, Fu GC (1995) Acc Chem Res 28:446–452CrossRefGoogle Scholar
  5. 5.
    Veerman JJN, van Maarseveen JH, Visser GM, Kruse CG, Shoemaker HE, Hiemstra H, Rutjes FPJT (1998) Eur J Org Chem 11:2583–2589CrossRefGoogle Scholar
  6. 6.
    Piscopio AD, Miller JF, Koch K (1999) Tetrahedron 55:8189–8198CrossRefGoogle Scholar
  7. 7.
    Liu F, Stephen AG, Waheed AA, Freed EO, Fisher RJ, Burke TR (2010) Bioorg Med Chem Lett 20:318–321CrossRefGoogle Scholar
  8. 8.
    Cuny GD, Cao J, Hauske JR (1997) Tetrahedron Lett 38:5237–5240CrossRefGoogle Scholar
  9. 9.
    Maughon BR, Grubbs RH (1997) Macromolecules 30:3459–3469CrossRefGoogle Scholar
  10. 10.
    Scholl M, Ding S, Lee CW, Grubbs RH (2000) Org Lett 1:953–956CrossRefGoogle Scholar
  11. 11.
    Chang S, Jones L, Wang CM, Henling LM, Grubbs RH (1998) Organometallics 17:3460–3465CrossRefGoogle Scholar
  12. 12.
    Glatz I, Mayr M, Hoogenboom R, Schubert US, Buchmeiser MR (2003) J Chromat A 1015:65–71CrossRefGoogle Scholar
  13. 13.
    Lee BS, Mahajan S, Clapham B, Janda KD (2004) J Org Chem 69:3319–3329CrossRefGoogle Scholar
  14. 14.
    Pontrello JK, Allen MJ, Underbakke ES, Kiessling LL (2005) J Am Chem Soc 127:14536–14537CrossRefGoogle Scholar
  15. 15.
    Andrade RB, Plante OJ, Melean LG, Seeberger PH (1999) Org Lett 1:1811–1814CrossRefGoogle Scholar
  16. 16.
    Melean LG, Haase W-C, Seeberger PH (2000) Tetrahedron Lett 41:4329–4333CrossRefGoogle Scholar
  17. 17.
    Kanemitsu T, Seeberger PH (2003) Org Lett 5:4541–4544CrossRefGoogle Scholar
  18. 18.
    Palmacci ER, Plante OJ, Hewitt MC, Seeberger PH (2003) Helv Chim Acta 86:3975–3989CrossRefGoogle Scholar
  19. 19.
    Knerr L, Schmidt RR (1999) Synlett 11:1802–1804CrossRefGoogle Scholar
  20. 20.
    Tang Q, Wareing JR (2001) Tetrahedron Lett 42:1399–1401CrossRefGoogle Scholar
  21. 21.
    Knerr L, Schmidt RR (2000) Eur J Org Chem. 15:2803–2808CrossRefGoogle Scholar
  22. 22.
    Timmer MSM, Verdoes M, Sliedregt LAJM, van der Marel GA, van Boom JH, Overkleeft HS (2003) J Org Chem 68:9406–9411CrossRefGoogle Scholar
  23. 23.
    de Jong AR, Volbeda AG, Hagen B, van den Elst H, Overkleeft HS, van der Marel GA, Codée JDC (2013) Eur J Org Chem 29:6644–6655CrossRefGoogle Scholar
  24. 24.
    Conde-Frieboes K, Andersen S, Breinholt J (2000) Tetrahedron Lett 41:9153–9156CrossRefGoogle Scholar
  25. 25.
    Blackwell HE, Clemons PA, Schreiber SL (2001) Org Lett 3:1185–1188CrossRefGoogle Scholar
  26. 26.
    Liao Y, Fathi R, Yang Z (2003) J Comb Chem 5:79–81CrossRefGoogle Scholar
  27. 27.
    Varray S, Lazaro R, Martinez J, Lamaty F (2002) Eur J Org Chem 14:2308–2316CrossRefGoogle Scholar
  28. 28.
    Barrett AGM, Henessy AJ, Vezouet R, Procopiou PA, Seale PW, Stefaniak S, Upron RJ, White JP, Williams DJ (2004) J Org Chem 69:1028–1037CrossRefGoogle Scholar
  29. 29.
    Barrett AGM, Bibal B, Hopkins BT, Köbberling J, Love AC, Tedeschi L (2005) Tetrahedron 61:12033–12041CrossRefGoogle Scholar
  30. 30.
    Chaleix V, Sol V, Guilloton M, Granet R, Krausz P (2004) Tetrahedron Lett 45:5295–5299CrossRefGoogle Scholar
  31. 31.
    Sol V, Chaleix V, Granet R, Brausz P (2008) Tetrahedron 64:364–371CrossRefGoogle Scholar
  32. 32.
    Dimartino G, Wang D, Chapman RN, Arora PS (2005) Org Lett 7:2389–2392CrossRefGoogle Scholar
  33. 33.
    Concalves M, Estieu-Gionnet K, Lain G, Bayle M, Betz N (2005) Gerard Deleris Tetrahedron 61:7789–7795CrossRefGoogle Scholar
  34. 34.
    Risseeuw MDP, Grotenberg GM, Witte MD, Tuin AW, Leeuwenburgh MA, Van der Marel GA, Overkleeft HS, Overhand M (2006) Eur J Org Chem 17:3877–3886CrossRefGoogle Scholar
  35. 35.
    Pattabiraman VR, Stymiest JL, Derksen DJ, Martin NIM, Vederas JC (2007) Org Lett 9:699–702CrossRefGoogle Scholar
  36. 36.
    Brouwer AJ, Elgersma RC, Jagodzinska M, Rijkers DTS, Liskamp RMJ (2008) Bioorg Med Chem Lett 18:78–84CrossRefGoogle Scholar
  37. 37.
    Bergman YE, Del Borgo MP, Gopalan RD, Jalal S, Unabia SE, Ciampini M, Clayton DJ, Fletcher JM, Mulder RJ, Wilce JA, Aguilar M-I, Perlmutter P (2009) Org Lett 11:4438–4440CrossRefGoogle Scholar
  38. 38.
    Fang W-J, Cui Y, Murray TF, Aldrich JV (2009) J Med Chem 52:5619–5625CrossRefGoogle Scholar
  39. 39.
    Marcaurelle LA, Comer E, Dandapani S, Duvall JR, Gerard B, Kesavan S, Lee MD, Liu H, Lowe JT, Marie J-C, Mulrooney CA, Pandya BA, Rowley A, Ryba TD, Suh B-C, Wei J, Young DW, Akella LB, Ross NT, Zhang Y-L, Fass DM, Reis SA, Zhao W-N, Haggarty SJ, Palmer M, Foley MA (2010) J Am Chem Soc 132:16962–16976CrossRefGoogle Scholar
  40. 40.
    Khan SN, Kim A, Grubbs RH, Kwon Y-U (2011) Org Lett 13:1582–1585CrossRefGoogle Scholar
  41. 41.
    Baron A, Verdie P, Martinez J, Lamaty F (2011) J Org Chem 76:766–772CrossRefGoogle Scholar
  42. 42.
    Garcia-Aranda MI, Marrero P, Gautier B, Martin-Martinez M, Inguimbert N, Vidal M, Garzia-Lopez MT, Jimenez MA, Gonzalez-Muniz R, de Vega MJP (2011) Bioorgan Med. Chem. 19:1978–1986CrossRefGoogle Scholar
  43. 43.
    Khan SN, Kim A, Grubbs RH, Kwon Y-U (2012) Org Lett 12:2952–2955CrossRefGoogle Scholar
  44. 44.
    Jida M, Betti C, Schiller PW, Tourwe D, Ballet S (2014) ACS Comb Sci 16:342–351CrossRefGoogle Scholar
  45. 45.
    Cohrt AE, Nielsen TE (2014) ACS Com. Sci. 16:71–77CrossRefGoogle Scholar
  46. 46.
    Chang S, Na Y, Shin HJ, Choi E, Jeong LS (2002) Tetrahedron Lett 43:7445–7448CrossRefGoogle Scholar
  47. 47.
    Garner AL, Koide K (2007) Org Lett 9:5235–5238CrossRefGoogle Scholar
  48. 48.
    Mendez L, Mata EG (2014) ACS Comb Sci 17:81–86CrossRefGoogle Scholar
  49. 49.
    Brown RCD, Castro JL, Moriggi J-D (2000) Tetrahedron Lett 41:3681–3685CrossRefGoogle Scholar
  50. 50.
    Reddy PT, Quevillon S, Gan Z, Forbes N, Leek DM, Arya P (2006) J Comb Chem 8:856–871CrossRefGoogle Scholar
  51. 51.
    Testero SA, Mata EG (2006) Org Lett 8:4783–4786CrossRefGoogle Scholar
  52. 52.
    Leach SG, Cordier CJ, Morton D, McKiernan GJ, Warriner S, Nelson A (2008) J Org Chem 73:2753–2759CrossRefGoogle Scholar
  53. 53.
    Poeylaut-Palena AA, Mata EG (2009) J Comb Chem 11:791–794CrossRefGoogle Scholar
  54. 54.
    Hill-Cousins JT, Salim SS, Bakar YM, Bellinham RK, Light ME, Brown RCD (2014) Tetrahedron 70:3700–3706CrossRefGoogle Scholar
  55. 55.
    Hamad FB, Kai C, Cai Y, Xie Y, Lu Y, Ding F, Sun Y, Verpoort F (2013) Curr Org Chem 17:2592–2608CrossRefGoogle Scholar
  56. 56.
    Monfette S, Eyholzer M, Roberge DM, Fogg DE (2010) Chem Eur J 16:11720–11725CrossRefGoogle Scholar
  57. 57.
    Skowerski K, Pastva J, Czarnocki SJ, Janoscova J (2015) Org Process Res Dev 19:872–877CrossRefGoogle Scholar
  58. 58.
    Pastva J, Skowerski K, Czarnocki SJ, Zilkova N, Cejka J, Bastl Z, Balcar H (2014) ACS Catal 4:3227–3236CrossRefGoogle Scholar
  59. 59.
    Nguyen ST, Grubbs RH (1995) J Organomet Chem 497:195–200CrossRefGoogle Scholar
  60. 60.
    Ahmed M, Barrett AGM, Braddock DC, Cramp PA (1999) Procopiou Tetrahedron Lett 40:8657–8662CrossRefGoogle Scholar
  61. 61.
    Ahmed M, Arnauld T, Barrett AGM, Braddock DC, Procopiou PA (2000) Synlett 7:1007–1009Google Scholar
  62. 62.
    Jafarpour L, Nolan SP (2000) Org Lett 2:4075–4078CrossRefGoogle Scholar
  63. 63.
    Jafarpour L, Heck M-P, Baylon C, Lee HM, Mioskowski S, Nolan SP (2002) Organometallics 21:671–679CrossRefGoogle Scholar
  64. 64.
    Dowden J, Savovic J (2001) Chem Commun 1:37–38CrossRefGoogle Scholar
  65. 65.
    Randl S, Buschmann N, Connon SJ, Blechert S (2001) Synlett 10:1547–1550CrossRefGoogle Scholar
  66. 66.
    Connon SJ, Blechert S (2002) Bioorgan Med Chem Lett 12:1873–1876CrossRefGoogle Scholar
  67. 67.
    Kingsbury JS, Garber SB, Giftos JM, Gray BL, Okamoto MM, Farrer RA, Fourkas JT, Hoveyda AH (2001) Angew Chem Int Ed 40:4251–4256CrossRefGoogle Scholar
  68. 68.
    Yao Q (2000) Angew Chem Int Ed 39:3896–3898CrossRefGoogle Scholar
  69. 69.
    Connon SJ, Dunne AM, Blechert S (2002) Angew Chem Int Ed 41:3835–3838CrossRefGoogle Scholar
  70. 70.
    Connon SJ, Blechert S (2003) Angew Chem Int Ed 42:1900–1923CrossRefGoogle Scholar
  71. 71.
    Grela K, Tryznowski M, Bieniek M (2002) Tetrahedron Lett 43:9055–9059CrossRefGoogle Scholar
  72. 72.
    Hultzsch KC, Jernelius JA, Hoveyda AH, Schrock RR (2002) Angew Chem Int Ed 41:589–593CrossRefGoogle Scholar
  73. 73.
    Michrowska A, Mennecke K, Kunz U, Kirschning A, Grela K (2006) J Am Chem Soc 128:13261–13267CrossRefGoogle Scholar
  74. 74.
    Skowerski K, Czarnocki SK, Knakiewicz P (2014) ChemSusChem 7:536–542CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemistry and BioengineeringTampere University of TechnologyTampereFinland

Personalised recommendations