Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691. doi:10.1126/science.1083671
CAS
Article
Google Scholar
Copéret C, Chabanas M, Petroff Saint-Arroman R, Basset J-M (2003) Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew Chem Int Ed Engl 42:156–181. doi:10.1002/anie.200390072
Article
Google Scholar
Corma A, García H (2002) Lewis acids as catalysts in oxidation reactions: from homogeneous to heterogeneous systems. Chem Rev 102:3837–3892. doi:10.1021/cr010333u
CAS
Article
Google Scholar
Corma A (2004) Attempts to fill the gap between enzymatic, homogeneous, and heterogeneous catalysis. Catal Rev 46:369–417. doi:10.1081/CR-200036732
CAS
Article
Google Scholar
Dusi M, Mallat T, Baiker A (2000) Epoxidation of functionalized olefins over solid catalysts. Catal Rev 42:213–278. doi:10.1081/CR-100100262
CAS
Article
Google Scholar
Marchese L, Gianotti E, Dellarocca V et al (1999) Structure–functionality relationships of grafted Ti-MCM41 silicas. spectroscopic and catalytic studies. Phys Chem Chem Phys 1:585–592. doi:10.1039/a808225a
CAS
Article
Google Scholar
Thomas JM, Sankar G (2001) The role of synchrotron-based studies in the elucidation and design of active sites in titanium—silica epoxidation catalysts. Acc Chem Res 34:571–581. doi:10.1021/ar010003w
CAS
Article
Google Scholar
Corma A (2003) State of the art and future challenges of zeolites as catalysts. J Catal 216:298–312. doi:10.1016/S0021-9517(02)00132-X
CAS
Article
Google Scholar
Saxton RJ (1999) Crystalline microporous titanium silicates. Top Catal 9:43–57. doi:10.1023/A:1019102320274
CAS
Article
Google Scholar
Clerici M (1993) Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite. J Catal 140:71–83. doi:10.1006/jcat.1993.1069
CAS
Article
Google Scholar
Maschmeyer T, Rey F, Sankar G, Thomas JM (1995) Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 378:159–162. doi:10.1038/378159a0
CAS
Article
Google Scholar
Guidotti M, Ravasio N, Psaro R et al (2003) Epoxidation on titanium-containing silicates: do structural features really affect the catalytic performance? J Catal 214:242–250. doi:10.1016/S0021-9517(02)00152-5
CAS
Article
Google Scholar
Jarupatrakorn J, Tilley TD (2002) Silica-supported, single-site titanium catalysts for olefin epoxidation. A molecular precursor strategy for control of catalyst structure. J Am Chem Soc 124:8380–8388. doi:10.1021/ja0202208
CAS
Article
Google Scholar
Bouh AO, Rice GL, Scott SL (1999) Mono- and dinuclear silica-supported titanium(IV) complexes and the effect of TioTi connectivity on reactivity. J Am Chem Soc 121:7201–7210. doi:10.1021/ja9829160
CAS
Article
Google Scholar
Notestein JM, Iglesia E, Katz A (2004) Grafted metallocalixarenes as single-site surface organometallic catalysts. J Am Chem Soc 126:16478–16486. doi:10.1021/ja0470259
CAS
Article
Google Scholar
Notestein JM, Solovyov A, Andrini LR et al (2007) The role of outer-sphere surface acidity in alkene epoxidation catalyzed by calixarene-Ti(IV) complexes. J Am Chem Soc 129:15585–15595. doi:10.1021/ja074614g
CAS
Article
Google Scholar
Notestein JM, Andrini LR, Kalchenko VI et al (2007) Structural assessment and catalytic consequences of the oxygen coordination environment in grafted Ti-calixarenes. J Am Chem Soc 129:1122–1131. doi:10.1021/ja065830c
CAS
Article
Google Scholar
Nandi P, Tang W, Okrut A et al (2013) Catalytic consequences of open and closed grafted Al(III)-calix[4]arene complexes for hydride and oxo transfer reactions. Proc Natl Acad Sci USA 110:2484–2489. doi:10.1073/pnas.1211158110
CAS
Article
Google Scholar
Nandi P, Solovyov A, Okrut A, Katz A (2014) Al III–Calix[4]arene catalysts for asymmetric meerwein–ponndorf–verley reduction. ACS Catal 4:2492–2495. doi:10.1021/cs5001976
CAS
Article
Google Scholar
de Silva N, Hwang S-J, Durkin KA, Katz A (2009) Vanadocalixarenes on silica: requirements for permanent anchoring and electronic communication. Chem Mater 21:1852–1860. doi:10.1021/cm803392m
Article
Google Scholar
Trent DL (2000) Propylene oxide. In: Kirk-Othmer encyclopedia of chemical technology. Wiley, Hoboken
Friedrich A, Radius U (2004) A calix[4]arene monoalkyl ether as a model of a tris(phenolate) ligand with a hemilabile anisole moiety: syntheses, molecular structures and bonding of calix[4]arene ether supported titanium complexes and their catalytic activity in epoxidation reactions. Eur J Inorg Chem 2004:4300–4316. doi:10.1002/ejic.200400430
Article
Google Scholar
Zanotti-Gerosa A, Solari E, Giannini L et al (1998) Titanium-carbon functionalities on an oxo surface defined by a calix[4] arene moiety and its redox chemistry. Inorganica Chim Acta 270:298–311. doi:10.1016/S0020-1693(97)05863-5
CAS
Article
Google Scholar
Radius U (2001) Shaping the cavity of the macrocyclic ligand in metallocalix[4]arenes: the role of the ligand sphere. Inorg Chem 40:6637–6642. doi:10.1021/ic010482v
CAS
Article
Google Scholar
Böhmer V (1995) Calixarene—makrocyclen mit (fast) unbegrenzten möglichkeiten. Angew Chemie 107:785–818. doi:10.1002/ange.19951070704
Article
Google Scholar
Dijkstra PJ, Brunink JAJ, Bugge KE et al (1989) Kinetically stable complexes of alkali cations with rigidified calix[4]arenes: synthesis, X-ray structures, and complexation of calixcrowns and calixspherands. J Am Chem Soc 111:7567–7575. doi:10.1021/ja00201a045
CAS
Article
Google Scholar
Shang S, Khasnis DV, Burton JM et al (1994) From a novel silyl p-tert-Butylcalix[4]arene triether to mono-O-alkyl substitution: a unique, efficient, and selective route to mono-O-substituted calix[4]arenes. Organometallics 13:5157–5159. doi:10.1021/om00024a067
CAS
Article
Google Scholar
Groenen LC, Ruël BHM, Casnati A et al (1991) Synthesis of monoalkylated calix[4]arenes via direct alkylation. Tetrahedron 47:8379–8384. doi:10.1016/S0040-4020(01)96179-4
CAS
Article
Google Scholar
van Loon J-D, Verboom W, Reinhoudt DN (1992) Selective functionalization and conformational properties of calix[4]arenes, a review. Org Prep Proced Int 24:437–462. doi:10.1080/00304949209356227
Article
Google Scholar
Zawadiak J, Gilner D, Kulicki Z, Baj S (1993) Concurrent iodimetric determination of cumene hydroperoxide and dicumenyl peroxide used for reaction control in dicumenyl peroxide synthesis. Analyst 118:1081. doi:10.1039/an9931801081
CAS
Article
Google Scholar
Winner L, Daniloff G, Nichiporuk RV et al (2015) Patterned grafted lewis-acid sites on surfaces: olefin epoxidation catalysis using tetrameric Ti(IV)–calix[4]arene complexes. Top Catal 58:441–450. doi:10.1007/s11244-015-0385-x
CAS
Article
Google Scholar
Zhuravlev LT (1987) Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 3:316–318. doi:10.1021/la00075a004
CAS
Article
Google Scholar
Marchese L, Maschmeyer T, Gianotti E et al (1997) probing the titanium sites in Ti–MCM41 by diffuse reflectance and photoluminescence UV–Vis spectroscopies. J Phys Chem B 101:8836–8838. doi:10.1021/jp971963w
CAS
Article
Google Scholar
Notestein JM, Iglesia E, Katz A (2007) Photoluminescence and charge-transfer complexes of calixarenes grafted on TiO 2 nanoparticles. Chem Mater 19:4998–5005. doi:10.1021/cm070779c
CAS
Article
Google Scholar
Fantacci S, Sgamellotti A, Re N, Floriani C (2001) Density functional study of tetraphenolate and calix[4]arene complexes of early transition metals. Inorg Chem 40:1544–1549. doi:10.1021/ic0004028
CAS
Article
Google Scholar
Prieto-Centurion D, Notestein JM (2011) Surface speciation and alkane oxidation with highly dispersed Fe(III) sites on silica. J Catal 279:103–110. doi:10.1016/j.jcat.2011.01.007
CAS
Article
Google Scholar
Böhmer V (1995) Calixarenes, macrocycles with(almost) unlimited possibilities. Angew Chemie 34:785–818. doi:10.1002/anie.199507131
Article
Google Scholar