Topics in Catalysis

, Volume 60, Issue 3–5, pp 361–366 | Cite as

Effect of Soot on N2O Formation Over Pt Based Diesel Oxidation Catalyst Supported on Microporous TiO2

  • Seung Gwan Lee
  • Hyun Jeong Lee
  • Inhak Song
  • Seunghee Youn
  • Do Heui Kim
  • Sung June Cho
Original Paper


The N2O formation over the diesel oxidation catalyst supported on microporous TiO2 has been investigated in the presence of the soot to simulate cold start or regeneration condition. The platinum (Pt) catalyst entrapped in micropore was resulted in the increase of the catalytic activity compared to the Pt catalyst supported on alumina. Also, it was shown that the presence of the soot with the oxidation catalyst enhanced the N2O formation.


DOC Microporous titania (m-TiO2Platinum (Pt) Location 



This project is supported by the “R&D Center for reduction of Non-CO2 Greenhouse gases(0458-20140019)” funded by Korea Ministry of Environment(MOE) as “Global Top Environment R&D Program”.


  1. 1.
    Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, DuBois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Rostrup-Nielson J, Sachtler WMH, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults BR, Tumas W (2001) Chem. Rev. 101(4):953–996CrossRefGoogle Scholar
  2. 2.
    Marten AL, Newbold SC (2012) Energ. Policy. 51:957–972CrossRefGoogle Scholar
  3. 3.
    Wallington TJ, Sullivan JL, Hurley MD (2008) Meteorol. Z. 17(2):109–116CrossRefGoogle Scholar
  4. 4.
    Lambert C, Dobson D, Gierczak C, Guo G, Ura J, Warner J (2014) J. Powertrains. 3(1):4–25CrossRefGoogle Scholar
  5. 5.
    van Setten BAAL, Makkee M, Moulijn JA (2001) Catal. Rev. 43(4):489–564CrossRefGoogle Scholar
  6. 6.
    Neeft JPA, Makkee M, Moulijn JA (1996) Fuel. Process. Technol. 47(1):1–69CrossRefGoogle Scholar
  7. 7.
    Maricq MM (2007) J. Aerosol. Sci. 38(11):1079–1118CrossRefGoogle Scholar
  8. 8.
    Cho JM, Sun MH, Kim TH, Cho SJ (2010) J. Nanosci. Nanotechno. 10(5):3336–3340CrossRefGoogle Scholar
  9. 9.
    Bavykin DV, Kulak AN, Walsh FC (2010) Cryst. Growth. Des. 10(10):4421–4427CrossRefGoogle Scholar
  10. 10.
    Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14(12):3160–3163CrossRefGoogle Scholar
  11. 11.
    Morgado E, de Abreu MAS, Pravia ORC, Marinkovic BA, Jardim PM, Rizzo FC, Araujo AS (2006) Solid. State. Sci. 8(8):888–900CrossRefGoogle Scholar
  12. 12.
    Ju KY, Cho JM, Cho SJ, Yun JJ, Mun SS, Han EM (2010) J. Nanosci. Nanotechno. 10(5):3623–3627CrossRefGoogle Scholar
  13. 13.
    Sun MH, Cho JM, Kim TH, Jang YB, Lee J, Cho SJ (2010) J. Nanosci. Nanotechno. 10(5):3635–3638CrossRefGoogle Scholar
  14. 14.
    Lee SK, Lee HJ, Song I, Youn S, Kim DH, Cho SJ (2015) Sci. Rep. doi: 10.1038/srep12702 Google Scholar
  15. 15.
    Bueno-Lopez A (2014) Appl. Catal. B-Environ. 146:1–11CrossRefGoogle Scholar
  16. 16.
    Shie JL, Chang CY, Chen JH, Tsai WT, Chen YH, Chiou CS, Chang CF (2005) Appl. Catal. B-Environ. 58(3–4):289–297CrossRefGoogle Scholar
  17. 17.
    Feng B, Liu H, Yuan J, Lin Z, Liu D (1996) Energy. Fuels. 10(1):203–208CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Seung Gwan Lee
    • 1
  • Hyun Jeong Lee
    • 1
  • Inhak Song
    • 2
  • Seunghee Youn
    • 2
  • Do Heui Kim
    • 2
  • Sung June Cho
    • 1
  1. 1.Department of Chemical EngineeringChonnam National UniversityKwangjuSouth Korea
  2. 2.School of Chemical and Biological Engineering, Institute of Chemical ProcessesSeoul National UniversitySeoulSouth Korea

Personalised recommendations