Topics in Catalysis

, Volume 60, Issue 3–5, pp 318–325 | Cite as

Structure Effects on Activity of Plasma Deposited Cobalt Oxide Catalysts for VOC Combustion

  • P. J. Jodłowski
  • R. J. Jędrzejczyk
  • D. Chlebda
  • J. Tyczkowski
  • J. Kryca
  • A. Kołodziej
  • J. Łojewska
Original Paper


The aim of this study was to obtain and characterise the series of cobalt based structured catalysts prepared by non-equilibrium plasma deposition. The catalysts were obtained under oxygen-rich and oxygen-free conditions. The catalysts were characterised by using spectroscopic and microscopic methods including AFM, SEM, EDS, in situ μRaman and XPS. The catalytic activity of prepared catalysts was measured under n-nonane catalytic combustion reaction. The correlation of catalytic activity with the catalysts characterisation results showed that the active cobalt form of the catalysts in catalytic combustion is spinel structure and is not correlated with the particle size.


Structured reactors VOC combustion Cobalt catalysts Plasma deposition In situ spectroscopy 



Financial support for this work was provided by Polish National Science Centre—Project No. 2013/09/B/ST8/00171 and partly within LIDER/204/L-6/14/NCBR/2015.


  1. 1.
    Iwaniszyn M, Ochońska J, Gancarczyk A et al (2013) Short-channel structured reactor as a catalytic afterburner. Top Catal 56:273–278. doi: 10.1007/s11244-013-9966-8 CrossRefGoogle Scholar
  2. 2.
    Iwaniszyn M, Ochońska J, Jodłowski P et al (2013) Microstructured reactor as a pre-turbo catalytic converter. Top Catal 56:384–389. doi: 10.1007/s11244-013-9984-6 CrossRefGoogle Scholar
  3. 3.
    Ochońska-Kryca J, Iwaniszyn M, Piątek M et al (2013) Mass transport and kinetics in structured steel foam reactor with Cu-ZSM-5 catalyst for SCR of NOx with ammonia. Catal Today 216:135–141. doi: 10.1016/j.cattod.2013.05.018 CrossRefGoogle Scholar
  4. 4.
    Cybulski A, Moulijn JA (2006) Structured catalysts and reactors. Taylor & Francis Group, AbingdonGoogle Scholar
  5. 5.
    Cybulski A, Moulijn JA (1994) Monoliths in heterogeneous catalysis. Catal Rev Sci Eng 36:179–270CrossRefGoogle Scholar
  6. 6.
    Kolaczkowski S (2006) Treatment of volatile organic carbon (VOC) emissions from stationary sources: catalytic oxidation of the gaseous phase. In: Cybulski A, Moulijn JA (eds) Structured catalysts and reactors. Chemical industries, vol 110. CRC Press, Boca Raton, pp 147–170Google Scholar
  7. 7.
    Campanati M, Fornasari G, Vaccari A (2003) Fundamentals in the preparation of heterogeneous catalysts. Catal Today 77:299–314. doi: 10.1016/S0920-5861(02)00375-9 CrossRefGoogle Scholar
  8. 8.
    Meille V (2006) Review on methods to deposit catalysts on structured surfaces. Appl Catal A Gen 315:1–17. doi: 10.1016/j.apcata.2006.08.031 CrossRefGoogle Scholar
  9. 9.
    Meille V, Pallier S, Santacruzbustamante G et al (2005) Deposition of -AlO layers on structured supports for the design of new catalytic reactors. Appl Catal A Gen 286:232–238. doi: 10.1016/j.apcata.2005.03.028 CrossRefGoogle Scholar
  10. 10.
    Giani L, Cristiani C, Groppi G, Tronconi E (2006) Washcoating method for Pd/γ-Al2O3 deposition on metallic foams. Appl Catal B Environ 62:121–131. doi: 10.1016/j.apcatb.2005.07.003 CrossRefGoogle Scholar
  11. 11.
    Jodłowski PJ, Gołąb R, Kryca J et al (2013) A comparison between monolithic and wire gauze structured catalytic reactors for CH4 and CO removal from biogas-fuelled engine exhaust. Top Catal 56:390–396. doi: 10.1007/s11244-013-9985-5 CrossRefGoogle Scholar
  12. 12.
    Valentini M, Groppi G, Cristiani C et al (2001) The deposition of Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts. Catal Today 69:307–314CrossRefGoogle Scholar
  13. 13.
    Kolaczkowski ST, Kim S (2006) Novel alumina “KK Leaf Structures” as catalyst supports. Catal Today 117:554–558. doi: 10.1016/j.cattod.2006.06.002 CrossRefGoogle Scholar
  14. 14.
    Lojewska J, Kolodziej A, Kapica R et al (2009) In search for active non-precious metal catalyst for VOC combustion evaluation of plasma deposited Co and Co/Cu oxide catalysts on metallic structured carriers. Catal Today 147S:94–98. doi: 10.1016/j.cattod.2009.07.021 CrossRefGoogle Scholar
  15. 15.
    Kołodziej A, Łojewska J, Jaroszyński M et al (2012) Heat transfer and flow resistance for stacked wire gauzes: experiments and modelling. Int J Heat Fluid Flow 33:101–108. doi: 10.1016/j.ijheatfluidflow.2011.11.006 CrossRefGoogle Scholar
  16. 16.
    Benea L, Ponthiaux P, Wenger F (2011) Co-ZrO2 electrodeposited composite coatings exhibiting improved micro hardness and corrosion behavior in simulating body fluid solution. Surf Coat Technol 205:5379–5386. doi: 10.1016/j.surfcoat.2011.05.050 CrossRefGoogle Scholar
  17. 17.
    Ahlstrom-Sllversand AF, Ingemar Odenbrand CU (1997) Thermally sprayed wire-mesh catalysts for the purification of flue gases from small-scale combustion of bio-fuel Catalyst preparation and activity studies. Appl Catal A Gen 153:177–201CrossRefGoogle Scholar
  18. 18.
    Łojewska J, Dynarowicz-Łątka P, Kołodziej A (2006) Preparation, characterization and deposition of Langmuir–Blodgett Co, Al organic films for the catalytic applications. Thin Solid Films 495:299–307. doi: 10.1016/j.tsf.2005.08.202 CrossRefGoogle Scholar
  19. 19.
    Ochońska J, Rogulska A, Jodłowski PJ et al (2013) Prospective catalytic structured converters for NH3-SCR of NOx from biogas stationary engines. In situ template-free synthesis of ZSM-5 Cu exchanged catalysts on steel carriers. Top Catal 56:56–61. doi: 10.1007/s11244-013-9929-0 CrossRefGoogle Scholar
  20. 20.
    Brault P (2011) Plasma deposition of catalytic thin films: experiments, applications, molecular modeling. Surf Coat Technol 205:S15–S23. doi: 10.1016/j.surfcoat.2010.02.069 CrossRefGoogle Scholar
  21. 21.
    Kim SH, Jung CH, Sahu N et al (2013) Catalytic activity of Au/TiO2 and Pt/TiO2 nanocatalysts prepared with arc plasma deposition under CO oxidation. Appl Catal A Gen 454:53–58. doi: 10.1016/j.apcata.2012.12.049 CrossRefGoogle Scholar
  22. 22.
    Tyczkowski J, Kapica R (2007) Cold plasma in the nanotechnology of catalysts. Pol J Chem Technol 9:36–42. doi: 10.2478/v10026-007-0010-2 CrossRefGoogle Scholar
  23. 23.
    Etspüler A, Suhr H (1989) Deposition of thin rhodium films by plasma-enhanced chemical vapor deposition. Appl Phys A Solids Surf 48:373–375. doi: 10.1007/BF00618901 CrossRefGoogle Scholar
  24. 24.
    Everaert K, Baeyens J (2004) Catalytic combustion of volatile organic compounds. J Hazard Mater 109:113–139. doi: 10.1016/j.jhazmat.2004.03.019 CrossRefGoogle Scholar
  25. 25.
    Garcia T, Agouram S, Sánchez-Royo JF et al (2010) Deep oxidation of volatile organic compounds using ordered cobalt oxides prepared by a nanocasting route. Appl Catal A Gen 386:16–27. doi: 10.1016/j.apcata.2010.07.018 CrossRefGoogle Scholar
  26. 26.
    Liotta LF, Di Carlo G, Pantaleo G et al (2006) Co3O4/CeO2 composite oxides for methane emissions abatement: relationship between Co3O4–CeO2 interaction and catalytic activity. Appl Catal B Environ 66:217–227. doi: 10.1016/j.apcatb.2006.03.018 CrossRefGoogle Scholar
  27. 27.
    Radwan NRE, El-Shall MS, Hassan HMA (2007) Synthesis and characterization of nanoparticle Co3O4, CuO and NiO catalysts prepared by physical and chemical methods to minimize air pollution. Appl Catal A Gen 331:8–18. doi: 10.1016/j.apcata.2007.07.005 CrossRefGoogle Scholar
  28. 28.
    Deraz N-AM (2002) Surface and catalytic properties of Co3O4-doped CuO–Al2O3 catalysts. Colloids Surf A Physicochem Eng Asp 207:197–206CrossRefGoogle Scholar
  29. 29.
    Boix A, Miró EE, Lombardo EA et al (2003) The nature of cobalt species in Co and PtCoZSM5 used for the SCR of NOx with CH4. J Catal 217:186–194. doi: 10.1016/S0021-9517(03)00056-3 Google Scholar
  30. 30.
    Vuurman MA, Stufkens DJ, Oskam A et al (1996) Combined Raman and IR study of MOx-V2O5/Al2O3 (MO = MoO3, WO3, NiO, CoO) catalysts under dehydrated conditions. J Chem Soc Faraday Trans 92:3259–3265CrossRefGoogle Scholar
  31. 31.
    Tang C-W, Wang C-B, Chien S-H (2008) Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim Acta 473:68–73. doi: 10.1016/j.tca.2008.04.015 CrossRefGoogle Scholar
  32. 32.
    Clarke DR (2002) Stress generation during high-temperature oxidation of metallic alloys. Curr Opin Solid State Mater Sci 6:237–244. doi: 10.1016/S1359-0286(02)00074-8 CrossRefGoogle Scholar
  33. 33.
    Łojewska J, Kołodziej A, Łojewski T et al (2009) Structured cobalt oxide catalyst for VOC combustion. Part I: catalytic and engineering correlations. Appl Catal A Gen 366:206–211. doi: 10.1016/j.apcata.2009.07.006 CrossRefGoogle Scholar
  34. 34.
    Gwag JS, Sohn Y (2012) Interfacial natures and controlling morphology of Co oxide nanocrystal structures by adding spectator Ni ions. Bull Korean Chem Soc 33:505–510. doi: 10.5012/bkcs.2012.33.2.505 CrossRefGoogle Scholar
  35. 35.
    de Faria DLA, Silva SV, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878CrossRefGoogle Scholar
  36. 36.
    Oku M, Hirokawa K (1976) X-ray photoelectron spectroscopy of Co3O4, Fe3O4, Mn3O4, and related compounds. J Electron Spectros Relat Phenomena 8:475–481. doi: 10.1016/0368-2048(76)80034-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • P. J. Jodłowski
    • 1
  • R. J. Jędrzejczyk
    • 2
  • D. Chlebda
    • 3
  • J. Tyczkowski
    • 4
  • J. Kryca
    • 5
  • A. Kołodziej
    • 5
    • 6
  • J. Łojewska
    • 3
  1. 1.Faculty of Chemical Engineering and TechnologyCracow University of TechnologyKrakówPoland
  2. 2.Malopolska Centre of BiotechnologyJagiellonian UniversityKrakówPoland
  3. 3.Faculty of ChemistryJagiellonian UniversityKrakówPoland
  4. 4.Faculty of Process and Environmental EngineeringTechnical University of LodzŁódźPoland
  5. 5.Polish Academy of SciencesInstitute of Chemical EngineeringGliwicePoland
  6. 6.Faculty of Civil EngineeringOpole University of TechnologyOpolePoland

Personalised recommendations