Topics in Catalysis

, Volume 59, Issue 8–9, pp 809–816 | Cite as

Structure and Oxidizing Power of Single Layer α-V2O5

  • Henrik H. Kristoffersen
  • Horia MetiuEmail author
Original Paper


Vanadium pentoxide is a layered compound in which V2O5 monolayers are held together by van der Waals forces. It is therefore possible, in principle, to exfoliate the material and form two-dimensional monolayers. Density functional theory is used to calculate the structure and the energy of vacancy formation for hypothetical, two-dimensional V2O5 systems and compare them to the same properties of V2O5 slabs. We study a two-dimensional sheet (infinite in two directions) and two ribbons (infinite in one direction) whose edges are perpendicular to the [100] or [001] directions. These edges undergo a substantial reconstruction. When an oxygen vacancy is formed, the formal charge of two vanadium atoms is reduced from 5+ to 4+. The energy of oxygen vacancy formation is higher for the two-dimensional structures than for the corresponding slabs (i.e. it is more difficult to remove oxygen from the edge of a ribbon perpendicular to [001] than from the (001) surface of a slab). Therefore, the two-dimensional structures are less aggressive oxidants than vanadium pentoxide powders.


Vanadia Two-dimensional oxide Edge structure Oxygen vacancy formation DFT + U 



Financial support was provided by the Department of Energy, Office of Science, Office of Basic Energy Sciences DE-FG03-89ER14048 and the Air Force Office of Scientific Research FA9550-12-1-0147. We acknowledge support from the Center for Scientific Computing at the California NanoSystems Institute and the UCSB Materials Research Laboratory (an NSF MRSEC, DMR-1121053) funded in part by NSF CNS-0960316 and Hewlett-Packard. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357.

Supplementary material

11244_2016_553_MOESM1_ESM.pdf (3.6 mb)
Supplementary material 1 (PDF 3734 kb)


  1. 1.
    Carrero CA, Schlögl R, Wachs IE, Schomaecker R (2014) Critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts. ACS Catal 4(10):3357–3380CrossRefGoogle Scholar
  2. 2.
    Wachs IE (2013) Catalysis science of supported vanadium oxide catalysts. Dalton Trans 42(33):11762–11769CrossRefGoogle Scholar
  3. 3.
    Wachs IE (2005) Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catal Today 100(1–2):79–94CrossRefGoogle Scholar
  4. 4.
    Nicolosi N, Chhowala M, Kanatzidis MG, Strano MS, Coelman JN (2013) Liquid exfoliation of layered materials. Science 340(6139):1420–1438CrossRefGoogle Scholar
  5. 5.
    Xiao H, Chaoliang T, Zongyou Y, Hua Z (2014) 25th Aniversary article: hybrid nanostructures based on two-dimensional nanomaterials. Adv Mater 26(14):2185–2204CrossRefGoogle Scholar
  6. 6.
    Young RJ (2013) Two-dimensional nanocrystals: structure, properties and applications. Arab J Sci Eng 38(6):1289–1304CrossRefGoogle Scholar
  7. 7.
    Smith RJ, King PJ, Lotya M, Wirtz C, Khan U, De S, O’Neill A, Duesberg GS, Grunlan JC, Moriarty G, Chen J, Wang J, Minett AI, Nicolosi V, Coleman JN (2011) Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater 23(34):3944–3948CrossRefGoogle Scholar
  8. 8.
    Ma R, Sasaki T (2010) Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Adv Mater 22(45):5082–5104CrossRefGoogle Scholar
  9. 9.
    Kim BH, Hong WG, Lee SM, Yun YJ, Yu HY, Oh S-Y, Kim CH, Kim YY, Kim HJ (2010) Enhancement of hydrogen storage capacity in polyaniline-vanadium pentoxide nanocomposites. Int J Hydrogen Energy 35(3):1300–1304CrossRefGoogle Scholar
  10. 10.
    Chen Y, Yang G, Zhang Z, Yang X, Hou W, Zhu J-J (2010) Polyaniline-intercalated layered vanadium oxide nanocomposites—one-pot hydrothermal synthesis and application in lithium battery. Nanoscale 2(10):2131–2138CrossRefGoogle Scholar
  11. 11.
    An Q, Wei Q, Mai L, Fei J, Xu X, Zhao Y, Yan M, Zhang P, Huang S (2013) Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. Phys Chem Chem Phys 15(39):16828–16833CrossRefGoogle Scholar
  12. 12.
    Rui X, Lu Z, Yu H, Yang D, Hng HH, Lim TM, Yan Q (2013) Ultrathin V2O5 nanosheet cathodes: realizing ultrafast reversible lithium storage. Nanoscale 5(2):556–560CrossRefGoogle Scholar
  13. 13.
    Zhu J, Cao L, Wu Y, Gong Y, Liu Z, Hoster HE, Zhang Y, Zhang S, Yang S, Yan Q, Ajayan PM, Vajtai R (2013) Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors. Nano Lett 13(11):5408–5413CrossRefGoogle Scholar
  14. 14.
    Murugan AV, Kale BB, Kwon C-W, Campet G, Vijayamohanan K (2001) Synthesis and characterization of a new organo-inorganic poly(3,4-ethylene dioxythiophene) PEDOT/V2O5 nanocomposite by intercalation. J Mater Chem 11(10):2470–2475CrossRefGoogle Scholar
  15. 15.
    Liu YJ, Schindler JL, DeGroot DC, Kannewurf CR, Hirpo W, Kanatzidis MG (1996) Synthesis, structure, and reactions of poly(ethylene oxide)/V2O5 intercalative nanocomposites. Chem Mater 8(2):525–534CrossRefGoogle Scholar
  16. 16.
    Centi G, Cavani F, Trifiro F (2001) Selective oxidation by heterogeneous catalysis. Kluwer Academic/Plenum, New YorkCrossRefGoogle Scholar
  17. 17.
    Fierro JLG (ed) (2006) Metal oxides chemistry and applications. Taylor & Francis, New YorkGoogle Scholar
  18. 18.
    Mars P, van Krevelen DW (1954) Oxidation carried out by means of vanadium oxide catalysts. Chem Eng Sci Special Supplement 3(1):41–59CrossRefGoogle Scholar
  19. 19.
    Doornkamp C, Ponec V (2000) The universal character of the Mars and Van Krevelen mechanism. J Mol Catal A: Chem 162(1–2):19–32CrossRefGoogle Scholar
  20. 20.
    Vannice MA (2007) An analysis of the Mars–Van Krevelen rate expression. Catal Today 123(1–4):18–22CrossRefGoogle Scholar
  21. 21.
    Metiu H, Chrétien S, Hu Z, Li B, Sun X (2012) Chemistry of Lewis acid–base pairs on oxide surfaces. J Phys Chem C 116(19):10439–10450CrossRefGoogle Scholar
  22. 22.
    McFarland EW, Metiu H (2013) Catalysis by doped oxides. Chem Rev 113(6):4391–4427CrossRefGoogle Scholar
  23. 23.
    Paier J, Penschke C, Sauer J (2013) Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem Rev 113(6):3949–3985CrossRefGoogle Scholar
  24. 24.
    Di Valentin C, Pacchioni G (2014) Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations. Acc Chem Res 47(11):3233–3241CrossRefGoogle Scholar
  25. 25.
    Tang Q, Li F, Zhou Z, Chen Z (2011) Versatile electronic and magnetic properties of corrugated V2O5 two-dimensional crystal and its derived one-dimensional nanoribbons: a computational exploration. J Phys Chem C 115(24):11983–11990CrossRefGoogle Scholar
  26. 26.
    Porsev VV, Bandura AV, Evarestov RA (2014) Hybrid Hartree–Fock–density functional theory study of V2O5 three phases: comparison of bulk and layer stability, electron and phonon properties. Acta Mater 75:246–258CrossRefGoogle Scholar
  27. 27.
    Kanatzidis MG, Wu CG, Marcy HO, DeGroot DC, Kannewurf CR (1990) Conductive polymer/oxide bronze nanocomposites. Intercalated polythiophene in vanadium pentoxide (V2O5) xerogels. Chem Mater 2(3):222–224CrossRefGoogle Scholar
  28. 28.
    Kanatzidis MG, Wu CG, Marcy HO, Kannewurf CR (1989) Conductive-polymer bronzes. Intercalated polyaniline in vanadium oxide xerogels. J Am Chem Soc 111(11):4139–4141CrossRefGoogle Scholar
  29. 29.
    Liu YJ, DeGroot DC, Schindler JL, Kannewurf CR, Kanatzidis MG (1991) Intercalation of poly(ethylene oxide) in vanadium pentoxide (V2O5) xerogel. Chem Mater 3(6):992–994CrossRefGoogle Scholar
  30. 30.
    Petkov V, Trikalitis PN, Bozin ES, Billinge SJL, Vogt T, Kanatzidis MG (2002) Structure of V2O5·nH2O xerogel solved by the atomic pair distribution function technique. J Am Chem Soc 124(34):10157–10162CrossRefGoogle Scholar
  31. 31.
    Kristoffersen HH, Metiu H (2016) Structure of V2O5·nH2O xerogels. J Phys Chem C 120(7):3986–3992CrossRefGoogle Scholar
  32. 32.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558–561CrossRefGoogle Scholar
  33. 33.
    Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid–metal–amorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251–14269CrossRefGoogle Scholar
  34. 34.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane–wave basis set. Phys Rev B 54(16):11169–11186CrossRefGoogle Scholar
  35. 35.
    Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane–wave basis set. Comput Mater Sci 6(1):15–50CrossRefGoogle Scholar
  36. 36.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar
  37. 37.
    Wang L, Maxisch T, Ceder G (2006) Oxidation energies of transition metal oxides within the GGA + U framework. Phys Rev B 73(19):195107CrossRefGoogle Scholar
  38. 38.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799CrossRefGoogle Scholar
  39. 39.
    Chakrabarti A, Hermann K, Druzinic R, Witko M, Wagner F, Petersen M (1999) Geometric and electronic structure of vanadium pentoxide: a density functional bulk and surface study. Phys Rev B 59(16):10583–10590CrossRefGoogle Scholar
  40. 40.
    Blum RP, Niehus H, Hucho C, Fortrie R, Ganduglia-Pirovano MV, Sauer J, Shaikhutdinov S, Freund HJ (2007) Surface metal-insulator transition on a vanadium pentoxide (001) single crystal. Phys Rev Lett 99(22):226103CrossRefGoogle Scholar
  41. 41.
    Londero E, Schröder E (2010) Role of van der Waals bonding in the layered oxide V2O5: first-principles density-functional calculations. Phys Rev B 82(5):054116CrossRefGoogle Scholar
  42. 42.
    Kristoffersen HH, Metiu H (2015) Reconstruction of low-index α-V2O5 surfaces. J Phys Chem C 119(19):10500–10506CrossRefGoogle Scholar
  43. 43.
    Chrétien S, Metiu H (2011) Electronic structure of partially reduced rutile TiO2 (110) surface: where are the unpaired electrons located? J Phys Chem C 115(11):4696–4705CrossRefGoogle Scholar
  44. 44.
    Deskins NA, Rousseau R, Dupuis M (2011) Distribution of Ti3+ surface sites in reduced TiO2. J Phys Chem C 115(15):7562–7572CrossRefGoogle Scholar
  45. 45.
    Wang HF, Li HY, Gong XQ, Guo YL, Lu GZ, Hu P (2012) Oxygen vacancy formation in CeO2 and Ce1−xZrxO2 solid solutions: electron localization, electrostatic potential and structural relaxation. Phys Chem Chem Phys 14(48):16521–16535CrossRefGoogle Scholar
  46. 46.
    Deskins NA, Rousseau R, Dupuis M (2009) Localized electronic states from surface hydroxyls and polarons in TiO2 (110). J Phys Chem C 113(33):14583–14586CrossRefGoogle Scholar
  47. 47.
    Finazzi E, Di Valentin C, Pacchioni G, Selloni A (2008) Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA + U, and hybrid DFT calculations. J Chem Phys 129(15):154113CrossRefGoogle Scholar
  48. 48.
    Shibuya T, Yasuoka K, Mirbt S, Sanyal B (2012) A systematic study of polarons due to oxygen vacancy formation at the rutile TiO2 (110) surface by GGA + U and HSE06 methods. J Phys: Condens Matter 24(43):435504Google Scholar
  49. 49.
    Shapovalov V, Metiu H (2007) VOx (x = 1–4) submonolayers supported on rutile TiO2 (110) and CeO2 (111) surfaces: the structure, the charge of the atoms, the XPS spectrum, and the equilibrium composition in the presence of oxygen. J Phys Chem C 111(38):14179–14188CrossRefGoogle Scholar
  50. 50.
    Ganduglia-Pirovano MV, Sauer J (2004) Stability of reduced V2O5 (001) surfaces. Phys Rev B 70(4):045422CrossRefGoogle Scholar
  51. 51.
    Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf Sci Rep 62(6):219–270CrossRefGoogle Scholar
  52. 52.
    Griffith WP, Wickins TD (1966) Raman studies on species in aqueous solutions. Part I. the vanadates. J Chem Soc A: 1087–1090Google Scholar
  53. 53.
    Vyboishchikov SF, Sauer J (2001) (V2O5)n gas-phase clusters (n = 1–12) compared to V2O5 crystal: DFT calculations. J Phys Chem A 105(37):8588–8598CrossRefGoogle Scholar
  54. 54.
    Guimond S, Sturm JM, Gobke D, Romanyshyn Y, Naschitzki M, Kuhlenbeck H, Freund HJ (2008) Well-ordered V2O5 (001) thin films on Au (111): growth and thermal stability. J Phys Chem C 112(31):11835–11846CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations