Advertisement

Topics in Catalysis

, Volume 59, Issue 8–9, pp 792–801 | Cite as

Theoretical Studies on the Adsorption of 1-Butyl-3-methyl-imidazolium-hexafluorophosphate (BMI/PF\(_6\)) on Au(100) Surfaces

  • Johannes Plöger
  • Jonathan E. Mueller
  • Timo Jacob
  • Josef Anton
Original Paper

Abstract

In order to gain a systematic understanding of electrode/electrolyte interface between gold electrodes and ionic liquids, the adsorption of 1-butyl-3-methyl-imidazolium-hexafluorophosphate (BMI/PF\(_6\)) on Au(100) was determined for a wide range of surface coverages using density functional theory (DFT) calculations. At low coverages BMI is exceptionally mobile (translational and rotational barriers of \(<\)0.06 eV) and lies flat on the surface. For higher coverages the repulsive interactions between neighboring BMI adsorbates are minimized as much as possible, while attractive interactions between oppositely charged BMI and PF\(_6\) are maximized by coordinating PF\(_6\) with positively charged carbons in the imidazole rings. At coverages up to 1/20 monolayers (ML per Au surface atoms) this results in adsorbate islands with an internal coverage of 1/20 ML in a checkerboard pattern of BMI and PF\(_6\), all lying in a plane parallel to the surface. For coverages between 1/20 and 2/35 ML the BMI ions are twisted out of this plane. Beyond 2/35 ML a new strategy is needed to accommodate excess BMI/PF\(_6\) on the surface and a second checkerboard plane of BMI/PF\(_6\) forms above the first. This strategy is successful until the coverage reaches 1/10 ML, at which the BMI adsorbates stand end on in order to squeeze even more adsorbates onto the surface.

Keywords

DFT Ionic liquids IL adsorption Gold-BMI/PF6-interface 

Notes

Acknowledgments

The authors gratefully acknowledge support from the BMBF (Ministry of Education and Research) and the Deutsche Forschungsgemeinschaft (DFG) through the project KO 576/28-1 as well as the European Research Council through the ERC-StartingGrant THEOFUN (Grant Agreement No. 259608)

References

  1. 1.
    Walden P (1914) Bull Acad Imp Sci (St. Petersburg) 1800:405Google Scholar
  2. 2.
    Esperanca JMSS, Lopes JNC, Tariq M, Santos LNBF, Magee JW (2010) J Chem Eng Data 55:3CrossRefGoogle Scholar
  3. 3.
    Holbrey JD, Rogers RD (2008) In: Wasserscheid P, Welton T (eds) Ionic liquids in synthesis, 2nd edn. Wiley, WeinheimGoogle Scholar
  4. 4.
    Ohno H (2011) Electrochemical aspects of Ionic liquids, 2nd edn. Wiley, New JerseyCrossRefGoogle Scholar
  5. 5.
    Chiappe C, Pieraccini D (2005) J Phys Org Chem 18:275CrossRefGoogle Scholar
  6. 6.
    Wasserscheid P, Keim W (2000) Angew Chem 112:3926CrossRefGoogle Scholar
  7. 7.
    Wasserscheid P, Keim W (2000) Angew Chem Int Ed 39:3772CrossRefGoogle Scholar
  8. 8.
    Wasserscheid P, Welton T (2007) Ionic liquids in synthesis, vol 2, 2nd edn. Wiley, WeinheimCrossRefGoogle Scholar
  9. 9.
    Matic A, Scrosati B (2013) MRS Bull 38:534CrossRefGoogle Scholar
  10. 10.
    MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliot GD, Davis JH Jr, Watanabe M, Simon P, Angell CA (2014) Energy Environ Sci 7:232CrossRefGoogle Scholar
  11. 11.
    Matsumoto H, Yanagida M, Tanimoto K, Nomura M, Kitagawa Y, Miyazaki Y (2000) Chem Lett 29:922CrossRefGoogle Scholar
  12. 12.
    Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Mita Y, Usami A, Terada N, Watanabe M (2005) Electrochem Solid State Lett 8:A577CrossRefGoogle Scholar
  13. 13.
    Seki S, Susan MAB, Kaneko T, Tokuda H, Noda A, Watanabe M (2005) J Phys Chem B 109:3886CrossRefGoogle Scholar
  14. 14.
    Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Usami A, Mita Y, Kihira N, Watanabe M, Terada N (2006) J Phys Chem Lett B 110:10228CrossRefGoogle Scholar
  15. 15.
    Yoshizawa M, Ogihara W, Ohno H (2001) Electrochem Solid State Lett 4:E25CrossRefGoogle Scholar
  16. 16.
    Noda A, Susan AB, Kudo K, Mitsushima S, Hayamizu K, Watanabe M (2003) J Phys Chem B 107:4042CrossRefGoogle Scholar
  17. 17.
    Susan M, Noda A, Mitsushima S, Watanabe M (2003) Chem Commun 3:938CrossRefGoogle Scholar
  18. 18.
    Angell CA, Xu W, Belieres J-P, Yoshizawa M (2004) US Patent WO2004114445AGoogle Scholar
  19. 19.
    O’Regan B, Grätzel M (1991) Nature 353:737CrossRefGoogle Scholar
  20. 20.
    Bai Y, Cao Y, Zhang J, Wang M, Li R, Wang P, Zakeeruddin SM, Grätzel M (2008) Nat Mater 7:626CrossRefGoogle Scholar
  21. 21.
    Quickenden TI, Mua Y (1995) J Electrochem Soc 142:3985CrossRefGoogle Scholar
  22. 22.
    Hu RC, Cola BA, Haram N, Barisci JN, Lee S, Stoughton S, Wallace G, Too C, Thomas M, Gestos S, Cruz MED, Ferraris JP, Zakhidow AA, Baughman RH (2010) Nano Lett 10:838CrossRefGoogle Scholar
  23. 23.
    Krause A, Balducci A (2011) Electrochem Commun 13:814CrossRefGoogle Scholar
  24. 24.
    MacFarlane DR, Forsyth M, Howlett PC, Pringle JM, Sun J, Annat G, Neil W, Izgorodina EI (2007) Acc Chem Res 40:1165CrossRefGoogle Scholar
  25. 25.
    Susan MA, Kaneko T, Noda A, Watanabe M (2005) J Am Chem Soc 127:4976CrossRefGoogle Scholar
  26. 26.
    Noda A, Watanabe M (2000) Electrochim Acta 45:1265CrossRefGoogle Scholar
  27. 27.
    Izgorodin A, Izgorodina E, MacFarlane DR (2012) Energy Environ Sci 5:9496CrossRefGoogle Scholar
  28. 28.
    Vijayaraghavan R, Rana UA, Elliot GD, MacFarlane DR (2013) Energy Technol 1(10):609CrossRefGoogle Scholar
  29. 29.
    D’Alessandro DM, Smit B, Long JR (2010) Angew Chem Int Ed 122:6194CrossRefGoogle Scholar
  30. 30.
    Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ (2004) J Am Chem Soc 126:5300CrossRefGoogle Scholar
  31. 31.
    Atkin R, El Abedin S, Hayes R, Gasparotto LHS, Borisenko N, Endres F (2009) J Phys Chem C 113:13266CrossRefGoogle Scholar
  32. 32.
    Endres F, Höfft O, Borisenko N, Gasparotto LHS, Prowald A, Al-Salman R, Carstens T, Atkin R, Bund A, El Abedin SZ (2010) Phys Chem Chem Phys 12:1724CrossRefGoogle Scholar
  33. 33.
    Atkin R, Borisenko N, Drüschler M, El Abedin SZ, Endres F, Hayes R, Huber B, Rolling B (2011) Phys Chem Chem Phys 13:6849CrossRefGoogle Scholar
  34. 34.
    Drüschler M, Borisenko N, Wallauer J, Winter C, Huber B, Endres F, Roling B (2012) Phys Chem Chem Phys 14:5090CrossRefGoogle Scholar
  35. 35.
    Gnahm M, Berger C, Arkhipova M, Kunkel H, Pajkossy T, Maas G, Kolb DM (2012) Phys Chem Chem Phys 14:10647CrossRefGoogle Scholar
  36. 36.
    Borra EF, Seddiki O, Angel R, Eisenstein D, Hickson P, Seddon KR, Worden SP (2007) Nature 447:979CrossRefGoogle Scholar
  37. 37.
    Steinrück HP (2012) Phys Chem Chem Phys 14:5010CrossRefGoogle Scholar
  38. 38.
    Smith EF, Rutten FJM, Villar-Gracia IJ, Briggs D, Licence P (2006) Langmuir 22:9386CrossRefGoogle Scholar
  39. 39.
    Höfft O, Bahr S, Himmerlich M, Krischok S, Schaefer JA, Kempter V (2006) Langmuir 22:7120CrossRefGoogle Scholar
  40. 40.
    Maier F, Gottfried JM, Rossa J, Gerhardt D, Schulz PS, Schwieger W, Wasserscheid P, Steinrück HP (2006) Angew Chem Int Ed 45:7778CrossRefGoogle Scholar
  41. 41.
    Armstrong JP, Hurst C, Jones RG, Licence P, Lovelock KRJ, Satterley CJ, Villar-Garcia IJ (2007) Phys Chem Chem Phys 9:982CrossRefGoogle Scholar
  42. 42.
    Souda R (2008) J Phys Chem B 112:15349CrossRefGoogle Scholar
  43. 43.
    Deyko A, Lovelock KRJ, Corfield JA, Taylor AW, Gooden PN, Villar-Garcia IJ, Licence P, Jones RG, Krasovskiy VG, Chernikova EA, Kustov LM (2009) Phys Chem Chem Phys 11:8544CrossRefGoogle Scholar
  44. 44.
    Lovelock KRJ, Villar-Garcia IJ, Maier F, Steinrück HP, Licence P (2010) Chem Rev 110:5158CrossRefGoogle Scholar
  45. 45.
    Sobota M, Schmid M, Happel M, Amende M, Maier F, Steinrück HP, Paape N, Wasserscheid P, Laurin M, Gottfried JM, Libuda J (2010) Phys Chem Chem Phys 12:10610CrossRefGoogle Scholar
  46. 46.
    Maier F, Cremer T, Kolbeck C, Lovelock KRJ, Paape N, Schulz PS, Wasserscheid P, Steinrück HP (1905) Phys Chem Chem Phys 2010:12Google Scholar
  47. 47.
    Cremer T, Wibmer L, Calderon SK, Deyko A, Maier F, Steinrück HP (2012) Phys Chem Chem Phys 14:5153CrossRefGoogle Scholar
  48. 48.
    Schernich S, Laurin M, Lykhach Y, Steinrück HP, Tsud N, Skala T, Prince KC, Tarcaddi N, Matolin V, Wasserscheid P, Libuda J (2012) J Phys Chem Lett 4:30CrossRefGoogle Scholar
  49. 49.
    Waldmann T, Huang HH, Hoster HE, Höfft O, Endres F, Behm RJ (2011) Chem Phys Chem 12:2565Google Scholar
  50. 50.
    Waldmann T, Nenon C, Tonigold K, Hoster HE, Gross A, Behm RJ (2012) Phys Chem Chem Phys 14:10726CrossRefGoogle Scholar
  51. 51.
    Gnahm M, Müller C, Répánszki R, Pajkossy T, Kolb DM (2011) Phys Chem Chem Phys 13:11627CrossRefGoogle Scholar
  52. 52.
    Perdew JP, Burke K, Enzerhof M (1996) Phys Rev Lett 18:3865CrossRefGoogle Scholar
  53. 53.
    Schultz PA, SeqQuest Sandia National Labs Albuquerque NM http://www.dft.sandia.gov/Quest
  54. 54.
    Szabo A, Ostlund N (1989) Modern quantum chemistry, 2nd edn. Dover Publications, New YorkGoogle Scholar
  55. 55.
    Verdozzi C, Schultz PA, Wu RQ, Edwards AH, Kioussis N (2002) Phys Rev B 66:129408CrossRefGoogle Scholar
  56. 56.
    Lide DR (1990) Handbook of chemistry and physics, 71st edn. CRC Press, Boca RatonGoogle Scholar
  57. 57.
    Cremer T, Stark M, Deyko A, Steinrück H-P, Maier F (2011) Langmuir 27:3662CrossRefGoogle Scholar
  58. 58.
    Cremer T, Kilian M, Gottfried JM, Paape N, Wasserscheid P, Maier F, Steinrück H-P (2008) Chem Phys Chem 9:2185Google Scholar
  59. 59.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104CrossRefGoogle Scholar
  60. 60.
    Köddermann T, Paschek D, Ludwig R (2007) Chem Phys Chem 8:2464Google Scholar
  61. 61.
    Maginn EJ (2009) J Phys 21:373101Google Scholar
  62. 62.
    Cremer T, Kolbeck C, Lovelock KRJ, Paape N, Wölfel R, Schulz PS, Wasserscheid P, Weber H, Thar J, Kirchner B, Maier F, Steinrück H-P (2010) Chem Eur J 16:9018CrossRefGoogle Scholar
  63. 63.
    Hunt PA, Gould IR, Kirchner B (2007) Aust J Chem 60:9CrossRefGoogle Scholar
  64. 64.
    Morrow TI, Maginn EJ (2002) J Phys Chem B 106:12807CrossRefGoogle Scholar
  65. 65.
    Hunt PA, Kirchner B, Welton T (2006) Chem Eur J 12:6767CrossRefGoogle Scholar
  66. 66.
    Mezger M, Schröder H, Reichert H, Schramm S, Okasinski JS, Schröder S, Hokimäki V, Deutsch M, Ocko BM, Ralston J, Rohwerder M, Stratmann M, Dosch H (2008) Science 322:424CrossRefGoogle Scholar
  67. 67.
    Law G, Watson PR, Carmichael AJ, Seddon KR (2001) Phys Chem Chem Phys 3:2879CrossRefGoogle Scholar
  68. 68.
    Baldelli S (2003) J Phys Chem B 107:6148CrossRefGoogle Scholar
  69. 69.
    Iimori T, Iwahashi T, Kanai K, Sekki K, Sung J, Kim D, Hamaguchi H, Ouchi Y (2007) J Phys Chem B 111:4860CrossRefGoogle Scholar
  70. 70.
    Sung J, Jeon Y, Kim D, Iwahashi T, Iimori T, Seki K, Ouchi Y (2005) Chem Phys Lett 406:495CrossRefGoogle Scholar
  71. 71.
    Malham IB, Letellier P, Turmine M (2006) J Phys Chem B 110:14212CrossRefGoogle Scholar
  72. 72.
    Lockett V, Sedev R, Bassell C, Ralston J (2008) Phys Chem Chem Phys 10:1330CrossRefGoogle Scholar
  73. 73.
    Bowers J, Vergara-Gutierrez MC, Webster JRP (2004) Langmuir 20:309CrossRefGoogle Scholar
  74. 74.
    Jeon Y, Sung J, Bu W, Vaknin D, Ouchi Y, Kim D (2008) J Phys Chem C 112:19649CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Johannes Plöger
    • 1
  • Jonathan E. Mueller
    • 1
    • 2
  • Timo Jacob
    • 1
    • 2
  • Josef Anton
    • 1
    • 2
  1. 1.Institute of ElectrochemistryUlm UniversityUlmGermany
  2. 2.Helmholtz-Institute-Ulm (HIU)UlmGermany

Personalised recommendations