Skip to main content

Advertisement

Log in

Nanoscale Engineering in the Development of Photoelectrocatalytic Cells for Producing Solar Fuels

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Engineering at the nanoscale level is a key aspect for the design of novel devices for sustainable energy to address the changeover from fossil fuels to renewable energy sources. This perspective paper, after introducing this topic, analyses the design and development of photoelectrocatalytic cells for producing solar fuels. To overcome limitations in the design of photoelectrocatalytic cells, a different one is proposed which eliminates the need of having a liquid electrolyte, where the electrodes are immersed. This cell design requires specific characteristics in the related electrodes/materials, which in combination with the different operation conditions, determine the need to investigate new fundamental aspects in the area. Some of the aspects analyzed regard (i) the role of nanostructure for visible light absorption of the semiconductor used, (ii) the need to use catalytic concepts (photoelectro-catalysis rather than photoelectro-chemistry), (iii) the mobility of charge carriers and relation with electrode characteristics, and (iv) space charge and Helmholtz layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Hagfeldt A, Gratzel M (1995) Chem. Rev. 95:49

    Article  CAS  Google Scholar 

  2. Kamat PV, Tvrdy K, Baker DR, Radich JG (2010) Chem Rev 110:6664

    Article  CAS  Google Scholar 

  3. van de Krol R, Liang YQ, Schoonman J (2008) J Mater Chem 18:2311

    Article  CAS  Google Scholar 

  4. Osterloh FE (2013) Chem Soc Rev 42:2294

    Article  CAS  Google Scholar 

  5. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Chem Rev 110:6446

    Article  CAS  Google Scholar 

  6. Abe R (2010) J Photochem Photobiol C Photochem Rev 11:179

    Article  CAS  Google Scholar 

  7. Wang T, Luo Z, Li C, Gong J (2014) Chem Soc Rev 43:7469

    Article  CAS  Google Scholar 

  8. Garcia-Martinez J (ed) (2010) Nanotechnology for the energy challenge. Wiley, Weinheim

    Google Scholar 

  9. O’Brien P (ed) (2013) Nanoscience. RSC, Cambridge

    Google Scholar 

  10. An K, Somorjai GA (2012) ChemCatChem 4:1512

    Article  CAS  Google Scholar 

  11. Centi G, Perathoner S (2011) Coord Chem Rev 255:1480

    Article  CAS  Google Scholar 

  12. Centi G, Perathoner S (2009) Eur J Inorg Chem 26:3851

    Article  CAS  Google Scholar 

  13. Centi G, Perathoner S (2011) ChemSusChem 4:913

    Article  CAS  Google Scholar 

  14. Su DS, Centi G (2013) J Energy Chem 22:151

    Article  CAS  Google Scholar 

  15. Xiao F-X, Miao J, Tao HB, Hung S-F, Wang H-Y, Yang HB, Chen J, Chen R, Liu B (2015) Small 11:2115

    Article  CAS  Google Scholar 

  16. Zhu T, Chong MN, Chan ES (2014) ChemSusChem 7:2974

    Article  CAS  Google Scholar 

  17. Lee D, Grigoropoulos CP (2015) RSC Nanosci Nanotechnol 35:174

    CAS  Google Scholar 

  18. Li Z, Luo W, Zhang M, Feng J, Zou Z (2013) Science 6:347

    CAS  Google Scholar 

  19. Joya KS (2014) ChemSusChem 7:73

    Article  CAS  Google Scholar 

  20. Joya KS, Joya YF, Ocakoglu K, van de Krol R (2013) Angew Chem Int Ed. 52:10426

    Article  CAS  Google Scholar 

  21. Barber J, Tran PD (2013) J R Soc Interface 10:20120984/1

    Article  CAS  Google Scholar 

  22. Nocera DG (2012) Acc Chem Res 45:767

    Article  CAS  Google Scholar 

  23. Bensaid S, Centi G, Garrone E, Perathoner S, Saracco G (2012) ChemSusChem 5:500

    Article  CAS  Google Scholar 

  24. Protti S, Albini A, Serpone N (2014) Phys Chem Chem Phys 16:19790

    Article  CAS  Google Scholar 

  25. Thomas JM (1801) ChemSusChem 2014:7

    Google Scholar 

  26. van der Giesen C, Kleijn R, Kramer GJ (2014) Environ Sci Technol 48:7111

    Article  CAS  Google Scholar 

  27. Thomas JM (2014) Energy Environ Sci 7:19

    Article  CAS  Google Scholar 

  28. Artero V, Fontecave M (2013) Chem Soc Rev 42:2338

    Article  CAS  Google Scholar 

  29. Vlcek A (2012) Coord Chem Rev 256:2397

    Article  CAS  Google Scholar 

  30. Centi G, Perathoner S (2010) ChemSusChem 3:19

    Article  CAS  Google Scholar 

  31. Centi G, Perathoner S, Passalacqua R, Ampelli C (2011) Carbon-neutral fuels and energy carriers, Ch. 4. CRC Press, Hoboken, p 291

    Google Scholar 

  32. Centi G, Perathoner S (2009) Catal Today 148:191

    Article  CAS  Google Scholar 

  33. Centi G, Perathoner S (2014) Green carbon dioxide: advances in CO2 utilization. Wiley, New York

    Book  Google Scholar 

  34. Schlögl R (2010) ChemSusChem 3:209

    Article  CAS  Google Scholar 

  35. Stouten S, Schlögl R (2013) Green Process Synthesis 2:293

    Article  CAS  Google Scholar 

  36. Perathoner S, Centi G, Su DS (2015) ChemSusChem 9:345–357

  37. Ampelli C, Centi G, Passalacqua R, Perathoner S (2015) Catal Today. doi:10.1016/j.cattod.2015.07.020

    Google Scholar 

  38. Ampelli C, Genovese C, Passalacqua R, Perathoner S, Centi G (2014) Appl Therm Eng 70:1270–1275

    Article  CAS  Google Scholar 

  39. Genovese C, Ampelli C, Perathoner S, Centi G (2013) J Catal 308:237–249

    Article  CAS  Google Scholar 

  40. Ampelli C, Passalacqua R, Genovese C, Perathoner S, Centi G, Montini T, Gombac V, Delgado JJ, Fornasiero P (2013) RSC Adv 3:21776–21788

    Article  CAS  Google Scholar 

  41. Ampelli C, Genovese C, Passalacqua R, Perathoner S, Centi G (2012) Theor Found Chem Eng 46:651–657

    Article  CAS  Google Scholar 

  42. Rios G, Centi G, Kanellopoulos N (2011) Nanoporous materials for energy and the environment. Pan Stanford, Singapore

    Google Scholar 

  43. Jiang X, Herricks T, Xia Y (2002) Nano Lett 2:1333

    Article  CAS  Google Scholar 

  44. Wu Y, Cai S, Wang D, He W, Li Y (2012) J Am Chem Soc 134:8975

    Article  CAS  Google Scholar 

  45. Link S, Mohamed MB, El-Sayed MA (1999) J Phys Chem B 103:3073

    Article  CAS  Google Scholar 

  46. Wang S, Li W-C, Hao G-P, Hao Y, Sun Q, Zhang X-Q, Lu A-H (2011) J Am Chem Soc 133:15304

    Article  CAS  Google Scholar 

  47. Nielsen TK, Besenbacher F, Jensen TR (2011) Nanoscale 3:2086

    Article  CAS  Google Scholar 

  48. Bishop KJM, Wilmer CE, Soh S, Grzybowski BA (2009) Small 5:1600

    Article  CAS  Google Scholar 

  49. Eder D (2010) Chem Rev 110:1348

    Article  CAS  Google Scholar 

  50. Centi G, Perathoner S (2014) In: Eder D, Schlögl R (eds) Nanocarbon-inorganic hybrids, Ch. 16. De Gruyter Pub., Berlin, p 429

    Google Scholar 

  51. Su DS, Perathoner S, Centi G (2013) Chem Rev 113:5782

    Article  CAS  Google Scholar 

  52. Kaerger J, Valiullin R (2013) Chem Soc Rev 42:4172

    Article  CAS  Google Scholar 

  53. Serrano DP, Escola JM, Pizarro P (2013) Chem Soc Rev 42:4004

    Article  CAS  Google Scholar 

  54. Fang J, Ding B, Gleiter H (2011) Chem Soc Rev 40:5347

    Article  CAS  Google Scholar 

  55. Li K, Valla J, Garcia-Martinez J (2014) ChemCatChem 6:46

    Article  CAS  Google Scholar 

  56. Morris RE, Čejka J (2015) Nat Chem 7:381

    Article  CAS  Google Scholar 

  57. Chlubná-Eliášová P, Tian Y, Pinar AB, Kubů M, Čejka J, Morris RE (2014) Angew Chem Int Ed 53:7048

    Article  CAS  Google Scholar 

  58. Lim B, Xia Y (2011) Angew Chem Int Ed 50:76

    Article  CAS  Google Scholar 

  59. Leelachaikul P, Castro-Dominguez B, Takagaki A, Sugawara T, Kikuchi R, Oyama ST (2014) Sep Purif Technol 122:431

    Article  CAS  Google Scholar 

  60. Sathre R, Scown CD, Morrow WR, Stevens JC, Sharp ID, Ager JW, Walczak K, Houle FA, Greenblatt JB (2014) Energy Environ Sci 7:3264

    Article  CAS  Google Scholar 

  61. Fabian DM, Hu S, Singh N, Houle FA, Hisatomi T, Domen K, Osterloh F, Ardo S (2015) Energy Environ Sci. doi:10.1039/C5EE01434D

    Google Scholar 

  62. Dias P, Lopes T, Andrade L, Mendes A (2014) J Power Sources 27:567

    Article  CAS  Google Scholar 

  63. Bassi PS, Gurudayal, Wong LH, Barber J (2014) Phys Chem Chem Phys 16:11834

    Article  CAS  Google Scholar 

  64. Carvalho WM, Souza FL (2014) J Mater Res 29:16

    Article  CAS  Google Scholar 

  65. Shen S (2014) J Mater Res 29:29

    Article  CAS  Google Scholar 

  66. Young KMH, Klahr BM, Zandi O, Hamann TW (2013) Catal Sci Technol 3:1660

    Article  CAS  Google Scholar 

  67. Bora DK, Braun A, Constable EC (2013) Energy Environ Sci 6:407

    Article  CAS  Google Scholar 

  68. Sivula K, Le Formal F, Graetzel M (2011) ChemSusChem 4:432

    Article  CAS  Google Scholar 

  69. Bossel U, Eliasson B (2015) Energy and the Hydrogen Economy, ABB Switzerland Ltd. Jan 2003. http://www.afdc.energy.gov/pdfs/hyd_economy_bossel_eliasson.pdf. 24 Aug 2015

  70. Centi G, Perathoner S, Winè G, Gangeri M (2007) Green Chem 9:671

    Article  CAS  Google Scholar 

  71. Grimes CA, Mor GK (2009) TiO2 nanotube arrays. Synthesis, properties, and applications. Springer, New York

    Book  Google Scholar 

  72. Rani S, Roy SC, Paulose M, Varghese OK, Mor GK, Kim S, Yoriya S, La Tempa TJ, Grimes CA (2010) Phys Chem Chem Phys 12:2780

    Article  CAS  Google Scholar 

  73. Macak JM, Zlamal M, Krysa J, Schmuki P (2007) Small 3:300

    Article  CAS  Google Scholar 

  74. Basahel SN, Lee K, Hahn R, Schmuki P, Bawakeda SM, Al-Thabaiti SA (2014) Chem Commun 50:6123

    Article  CAS  Google Scholar 

  75. Passalacqua R, Perathoner S, Centi G (2015) Catal Today 251:121

    Article  CAS  Google Scholar 

  76. Ampelli C, Passalacqua R, Perathoner S, Centi G, Su DS, Weinberg G (2008) Topics Catal 50:133

    Article  CAS  Google Scholar 

  77. Centi G, Passalacqua R, Perathoner S, Su DS, Weinberg G, Schlögl R (2007) Phys Chem Chem Phys 9:4930

    Article  CAS  Google Scholar 

  78. Ampelli C, Centi G, Passalacqua R, Perathoner S (2010) Energy Environ Sci 3:292

    Article  CAS  Google Scholar 

  79. Genovese C, Ampelli C, Perathoner S, Centi G (2013) J Energy Chem 22:202

    Article  CAS  Google Scholar 

  80. Centi G, Ampelli C, Genovese C, Marepally BC, Papanikolaou G, Perathoner S (2015) Faraday Discuss. doi:10.1039/C5FD00069F

    Google Scholar 

  81. van de Krol R (2012) In: van de Krol R, Grätzel M (eds) Photoelectrochemical hydrogen production. Springer, New York, pp 13–67

    Chapter  Google Scholar 

  82. Grätzel M (2001) Nature 414:338

    Article  Google Scholar 

  83. Liu F, Wang W, Wang L, Yang G (2013) Nanomater Energy 2:3

    Article  CAS  Google Scholar 

  84. Jung HS, Lee J-K (2013) J Phys Chem Lett 4:1682

    Article  CAS  Google Scholar 

  85. Kim B-G, Chung K, Kim J (2013) Chem A Eur J 19:5220

    Article  CAS  Google Scholar 

  86. Alibabaei L, Luo H, House RL, Hoertz PG, Lopez R, Meyer TJ (2013) J Mater Chem A Mater Energy Sustain 1:4133

    Article  CAS  Google Scholar 

  87. Concepcion JJ, House RL, Papanikolas JM, Meyer TJ (2012) PNAS 109:15560

    Article  CAS  Google Scholar 

  88. Song W, Chen Z, Glasson CRK, Hanson K, Luo H, Norris MR, Ashford DL, Concepcion JJ, Brennaman MK, Meyer TJ (2012) ChemPhysChem 13:2882

    Article  CAS  Google Scholar 

  89. Swierk JR, Mallouk TE (2013) Chem Soc Rev 42:2357

    Article  CAS  Google Scholar 

  90. Li Z, Luo W, Zhang M, Feng J, Zou Z (2013) Energy Environ Sci 6:347

    Article  CAS  Google Scholar 

  91. Hetterscheid DGH, Reek JNH (2012) Angew Chem Int Ed 51:9740

    Article  CAS  Google Scholar 

  92. Chouhan N, Chen C-K, Chang W-S, Cheng K-W, Liu R-S (2012) In: Liu R-S, Zhang L, Sun X, Liu H, Zhang J (eds) Electrochemical technologies for energy storage and conversion, vol 1, 2. Wiley, Weinheim, p 541

    Chapter  Google Scholar 

  93. Wang Z, Roberts RR, Naterer GF, Gabriel KS (2012) Int J Hydrogen Energy 37:16287

    Article  CAS  Google Scholar 

  94. Duan L, Tong L, Xu Y, Sun L (2011) Energy Environ Sci 4:3296

    Article  CAS  Google Scholar 

  95. Andreiadis ES, Chavarot-Kerlidou M, Fontecave M, Artero V (2011) Photochem Photobiol 87:946

    Article  CAS  Google Scholar 

  96. Matsumoto H (2011) In: Ohno H (ed) Electrochemical aspects of ionic liquids (2nd edn). Wiley, New York, p 221

    Chapter  Google Scholar 

  97. Zhang J, Wu Y, Xing M, Leghari SAK, Sajjad S (2010) Science 3:715

    Google Scholar 

  98. Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E (2007) Chem Phys 339:44

    Article  CAS  Google Scholar 

  99. Murphy AB (2008) Solar Energy Mater Solar Cells 92:363

    Article  CAS  Google Scholar 

  100. Tahir M, Amin NAS (2013) Energy Convers Manag 76:194

    Article  CAS  Google Scholar 

  101. Takeuchi M, Matsuoka M, Anpo M (2012) Res Chem Interm 38:1261

    Article  CAS  Google Scholar 

  102. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K (2012) Appl Catal B Environ. 125:331

    Article  CAS  Google Scholar 

  103. Passalacqua R, Ampelli C, Perathoner S, Centi G (2012) Nanosci Nanotechnol Lett 4:142–148

    Article  CAS  Google Scholar 

  104. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2011) Solar Energy Mater Solar Cells 2006:90

    Google Scholar 

  105. Toyoda T, Shen Q (1885) J Phys Chem Lett 2012:3

    Google Scholar 

  106. Pan X, Zhao Y, Fan Z (2012) Nanosci Nanotechnol Lett 4:463

    Article  CAS  Google Scholar 

  107. Szymanski P, El-Sayed MA (2012) Theor Chem Acc 131:1

    Article  CAS  Google Scholar 

  108. Wang H, Chen L, Feng Y, Chen H (2013) Acc Chem Res 46:1636

    Article  CAS  Google Scholar 

  109. Liu R, Duay J, Lee SB (2011) Chem Commun 47:1384

    Article  CAS  Google Scholar 

  110. Wu SY (2012) In Nanowires: Recent Advances (X, Peng edn. InTec, Rijeka, p 63

    Google Scholar 

  111. Watson IM (2013) Coord Chem Rev 257:2120

    Article  CAS  Google Scholar 

  112. Cao Y, Wu Z, Ni J, Bhutto WA, Li J, Li S, Huang K, Kang J (2012) Nano Micro Lett 4:135

    Article  CAS  Google Scholar 

  113. Veith M, Lee J, Miro MM, Akkan CK, Dufloux C, Aktas OC (2012) Chem Soc Rev 41:5117

    Article  CAS  Google Scholar 

  114. Bockris JOM, Reddy AKN, Galboa-Aldeco ME (2001) Modern electrochemistry 2A—fundamentals of electrodics. Springer, New York

    Google Scholar 

  115. Espinosa-Marzal RM, Drobek T, Balmer T, Heuberger MP (2012) Phys Chem Chem Phys 14:6085

    Article  CAS  Google Scholar 

  116. Liu C, Zhao L, Wang Y (2010) In: Chu PK (eds) 3rd international nanoelectronics conference, Hong Kong, China, p 846

  117. Hagfeldt A, Björksten U, Grätzel M (1996) J Phys Chem 100:8045

    Article  CAS  Google Scholar 

  118. Hwang YJ, Boukai A, Yang PD (2009) Nano Lett 9:410

    Article  CAS  Google Scholar 

  119. Lee GI, Nath NCD, Sarker S, Shin WH, Ahammad AJS, Kang JK, Lee JJ (2012) Phys Chem Chem Phys 14:5255

    Article  CAS  Google Scholar 

  120. Kongkanand A, Kamat PV (2007) ACS Nano 1:13

    Article  CAS  Google Scholar 

  121. Akimov AV, Neukirch AJ, Prezhdo OV (2013) Chem Rev 113:4496

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PRIN10-11 project “Mechanisms of activation of CO2 for the design of new materials for energy and resource efficiency” is gratefully acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siglinda Perathoner.

Additional information

Invited lecture at 2015 Rideal Conference, 25–27th March 2015, Berlin (Germany).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ampelli, C., Genovese, C., Centi, G. et al. Nanoscale Engineering in the Development of Photoelectrocatalytic Cells for Producing Solar Fuels. Top Catal 59, 757–771 (2016). https://doi.org/10.1007/s11244-016-0547-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0547-5

Keywords

Navigation