Skip to main content
Log in

Structure and Dynamics of Reactant Coadsorption on Single Crystal Model Catalysts by HP-STM and AP-XPS: A Mini Review

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Understanding the reaction mechanism of various heterogeneous catalytic reactions is of fundamental importance in catalysis science. In the past, scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) have proved to be powerful surface-sensitive techniques to characterize surface reactions on model catalysts under UHV conditions. The recent development of high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) has largely extended the application of these two excellent surface-sensitive imaging and electron spectroscopy techniques to a variety of catalytic systems under realistic conditions. In this mini review, we will review a series of catalytic systems studied by HP-STM and AP-XPS, including reactant coadsorption systems, coadsorption + reaction systems, and poisoned reaction systems. We will also illustrate one of the main difficulties in the practical execution of experiments where the initial surface cleanliness is easily compromised by the adsorption of adventitious contaminants. All of these examples will demonstrate that the combined use of HP-STM and AP-XPS can provide a deeper understanding of the structure and dynamics of reactant coadsorption on model catalysts, although great care has to been taken to maintain the cleanness of the in situ instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Salmeron M, Schlogl R (2008) Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf Sci Rep 63:169–199

    Article  CAS  Google Scholar 

  2. Escudero C, Salmeron M (2013) From solid–vacuum to solid–gas and solid–liquid interfaces: in situ studies of structure and dynamics under relevant conditions. Surf Sci 607:2–9

    Article  CAS  Google Scholar 

  3. Hendriksen BLM, Bobaru SC, Frenken JWM (2004) Oscillatory CO oxidation on Pd(100) studied with in situ scanning tunneling microscopy. Surf Sci 552:229–242

    Article  CAS  Google Scholar 

  4. Butcher DR, Zhu Z, Mao B et al (2013) Mobility on the reconstructed Pt(100)-hex surface in ethylene and in its mixture with hydrogen and carbon monoxide. Chem Commun 49:6903–6905

    Article  CAS  Google Scholar 

  5. Tao F, Tang D, Salmeron M, Somorjai GA (2008) A new scanning tunneling microscope reactor used for high-pressure and high-temperature catalysis studies. Rev Sci Instrum 79:084101

    Article  Google Scholar 

  6. Patera LL, Africh C, Weatherup RS et al (2013) In situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth. ACS Nano 7:7901–7912

    Article  CAS  Google Scholar 

  7. Van Spronsen MA, Van Baarle GJC, Herbschleb CT et al (2015) High-pressure operando STM studies giving insight in CO oxidation and NO reduction over Pt(110). Catal Today 244:85–95

    Article  Google Scholar 

  8. Ogletree DF, Bluhm H, Lebedev G et al (2002) A differentially pumped electrostatic lens system for photoemission studies in the millibar range. Rev Sci Instrum 73:3872

    Article  CAS  Google Scholar 

  9. Mitsui T, Rose MK, Fomin E et al (2002) Coadsorption and interactions of O and H on Pd(1 1 1). Surf Sci 511:259–266

    Article  CAS  Google Scholar 

  10. Völkening S, Bedürftig K, Jacobi K et al (1999) Dual-path mechanism for catalytic oxidation of hydrogen on platinum surfaces. Phys Rev Lett 83:2672–2675

    Article  Google Scholar 

  11. Bedurftig K, Volkening S, Wang Y et al (1999) Vibrational and structural properties of OH adsorbed on Pt(111). J Chem Phys 111:11147–11154

    Article  CAS  Google Scholar 

  12. Rider KB, Hwang KS, Salmeron M, Somorjai GA (2002) High-pressure (1 Torr) scanning tunneling microscopy (STM) study of the coadsorption and exchange of CO and NO on the Rh(111) crystal face. J Am Chem Soc 124:5588–5593

    Article  CAS  Google Scholar 

  13. Requejo FG, Hebenstreit EL, Ogletree DF, Salmeron M (2004) An in situ XPS study of site competition between CO and NO on Rh(111) in equilibrium with the gas phase. J Catal 226:83–87

    Article  CAS  Google Scholar 

  14. Eren B, Lichtenstein L, Wu CH, et al. (2015) Reaction of CO with pre-adsorbed oxygen on low-index copper surfaces: an ambient pressure XPS and STM study. J Phys Chem C 119(26):14669–14674

    Article  CAS  Google Scholar 

  15. Tang DC, Hwang KS, Salmeron M, Somorjai GA (2004) High pressure scanning tunneling microscopy study of CO poisoning of ethylene hydrogenation on Pt(111) and Rh(111) single crystals. J Phys Chem B 108:13300–13306

    Article  CAS  Google Scholar 

  16. Zhu Z, Barroo C, Lichtenstein L et al (2014) Influence of step geometry on the reconstruction of stepped platinum surfaces under coadsorption of ethylene and CO. J Phys Chem Lett 5:2626–2631

    Article  CAS  Google Scholar 

  17. Montano M, Bratlie K, Salmeron M, Somorjai GA (2006) Hydrogen and deuterium exchange on Pt(111) and its poisoning by carbon monoxide studied by surface sensitive high-pressure techniques. J Am Chem Soc 128:13229–13234

    Article  CAS  Google Scholar 

  18. Zhu Z, Melaet G, Axnanda S et al (2013) Structure and chemical state of the Pt(557) surface during hydrogen oxidation reaction studied by in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. J Am Chem Soc 135:12560–12563

    Article  CAS  Google Scholar 

  19. Permana H, Simon Ng KY, Peden CHF et al (1996) Adsorbed species and reaction rates for NO–CO over Rh(111). J Catal 164:194–206

    Article  CAS  Google Scholar 

  20. Campbell CT, White JM (1978) Chemisorption and reactions of nitric oxide on rhodium. Appl Surf Sci 1:347–359

    Article  CAS  Google Scholar 

  21. Dubois LH, Hansma PK, Somorjai GA (1980) Evidence for an oxygen intermediate in the catalytic NO by CO on rhodium surfaces. J Catal 65:318–327

    Article  CAS  Google Scholar 

  22. Hecker WC, Bell AT (1983) Reduction of NO by CO over silica-supported infrared and kinetic studies rhodium: infrared and kinetic studies. J Catal 84:200–215

    Article  CAS  Google Scholar 

  23. Schwartz SB, Fisher GB, Schmidt LD (1988) NO + CO reaction on Rh(111): steady-state rates and adsorbate coverages. J Phys Chem 92:389–395

    Article  CAS  Google Scholar 

  24. Peden CHF, Goodman DW, Blair DS et al (1988) Kinetics of carbon monoxide oxidation by oxygen or nitric oxide on rhodium(111) and rhodium(100) single crystals. J Phys Chem 92:1563–1567

    Article  CAS  Google Scholar 

  25. Cho BK, Shanks BH, Bailey JE (1989) Kinetics of NO reduction by CO over supported rhodium catalysts: isotopic cycling experiments. J Catal 115:486–499

    Article  CAS  Google Scholar 

  26. Ng KYS, Belton DN, Schmieg SJ, Fisher GB (1994) NO-CO activity and selectivity over a Pt10Rh90(111) alloy catalyst in the 10-Torr pressure range. J Catal 146:394–406

    Article  CAS  Google Scholar 

  27. Peden CHF, Belton DN, Schmieg SJ (1995) Structure sensitive selectivity of the NO-CO reaction over Rh(110) and Rh(111). J Catal 155:204–218

    Article  CAS  Google Scholar 

  28. Permana H, Ng KYS, Peden CHF et al (1995) Effect of NO pressure on the reaction of NO and CO over Rh(111). J Phys Chem 99:16344–16350

    Article  CAS  Google Scholar 

  29. Beutler A, Lundgren E, Nyholm R et al (1997) On the adsorption sites for CO on the Rh(111) single crystal surface. Surf Sci 371:381–389

    Article  CAS  Google Scholar 

  30. Beutler A, Lundgren E, Nyholm R et al (1998) Coverage- and temperature-dependent site occupancy of carbon monoxide on Rh(111) studied by high-resolution core-level photoemission. Surf Sci 396:117–136

    Article  CAS  Google Scholar 

  31. Gierer M, Barbieri A, Hove MA, Van Somorjai GA (1997) Structural reanalysis of Rh(111) + R30-CO and Rh(111) + (2 × 2)-3CO phases using automated tensor LEED. Surf Sci 391:176–182

    Article  CAS  Google Scholar 

  32. Van Hove MA, Koestner RJ, Somorjai GA (1983) Low-energy electron-diffraction intensity analysis of a surface structure with three CO molecules in the unit cell, Rh(111)-(2 × 2)-3CO: compact adsorption in simultaneous bridge and nonsymmetric near-top sites. Phys Rev Lett 50:903–906

    Article  Google Scholar 

  33. Van Hove MA, Koestner RJ, Frost JC, Somorjai GA (1983) The structure of Rh(111)(2 × 2)-3CO from leed intensities: simultaneous bridge and near-top adsorption in a distorted compact hexagonal CO overlayer. Surf Sci 129:482–506

    Article  Google Scholar 

  34. Kao C-T, Blackman GS, Van Hove MA et al (1989) The surface structure and chemical reactivity of Rh(111)-(2 × 2)-3NO by HREELS and dynamical LEED analysis. Surf Sci 224:77–96

    Article  CAS  Google Scholar 

  35. Zasada I, Van Hove MA, Somorjai GA (1998) Reanalysis of the Rh (111) + (2 × 2)-3NO structure using automated tensor LEED. Surf Sci 418:L89–L93

    Article  CAS  Google Scholar 

  36. Kim Y, Thevuthasan S, Herman G et al (1996) Chemisorption geometry of NO on Rh(111) by X-ray photoelectron diffraction. Surf Sci 359:269–279

    Article  CAS  Google Scholar 

  37. Toyoshima R, Yoshida M, Monya Y et al (2015) High-Pressure NO-Induced Mixed Phase on Rh(111): chemically Driven Replacement. J Phys Chem C 119:3033–3039

    Article  Google Scholar 

  38. Cernota P, Rider K, Yoon HA et al (2000) Dense structures formed by CO on Rh(111) studied by scanning tunneling microscopy. Surf Sci 445:249–255

    Article  CAS  Google Scholar 

  39. Rider K, Hwang K, Salmeron M, Somorjai GA (2001) Structure and dynamics of dense monolayers of NO adsorbed on Rh(111) in equilibrium with the gas phase in the Torr pressure range. Phys Rev Lett 86:4330–4333

    Article  CAS  Google Scholar 

  40. Root TW, Fisher GB, Schmidt LD (1986) Electron energy loss characterization of NO on Rh(111). I. NO coordinatin and dissociation. J Chem Phys 85:4687

    Article  CAS  Google Scholar 

  41. Root TW, Schmidt LD, Fisher GB (1985) Nitric oxide reduction by CO ON Rh(111): temperature programmed reaction. Surf Sci 150:173–192

    Article  CAS  Google Scholar 

  42. Koper MTM, van Santen RA, Wasileski SA, Weaver MJ (2000) Field-dependent chemisorption of carbon monoxide and nitric oxide on platinum-group (111) surfaces: quantum chemical calculations compared with infrared spectroscopy at electrochemical and vacuum-based interfaces. J Chem Phys 113:4392

    Article  CAS  Google Scholar 

  43. Loffreda D, Simon D, Sautet P (1998) Vibrational frequency and chemisorption site: a DFT-periodic study of NO on Pd (111) and Rh (111) surfaces. Chem Phys Lett 291:15–23

    Article  CAS  Google Scholar 

  44. Sautet P, Rose MK, Dunphy JC et al (2000) Adsorption and energetics of isolated CO molecules on Pd(111). Surf Sci 453:25–31

    Article  CAS  Google Scholar 

  45. Smedh M, Beutler A, Ramsvik T et al (2001) Vibrationally resolved C 1s photoemission from CO absorbed on Rh(111): the investigation of a new chemically shifted C 1s component. Surf Sci 491:99–114

    Article  CAS  Google Scholar 

  46. Somorjai GA, Li Y (2010) Introduction to surface chemistry and catalysis, 2nd edn. Wiley, Hoboken

    Google Scholar 

  47. Ertl G, Knözinger H, Schüth F, Weitkamp J (2008) Handbook of heterogeneous catalysis. VCH-Wiley, Weinheim

    Book  Google Scholar 

  48. Tao F, Dag S, Wang L-W et al (2010) Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327:850–853

    Article  CAS  Google Scholar 

  49. Longwitz SR, Schnadt J, Vestergaard EK et al (2004) High coverage structures of carbon monoxide adsorbed on Pt(111) studied by high pressure scanning tunneling microscopy. J Phys Chem B 108:14497–14502

    Article  CAS  Google Scholar 

  50. Land TA, Michely T, Behm RJ et al (1992) Direct observation of surface reactions by scanning tunneling microscopy: ethylene-tethylidyne → carbon particles → graphite on Pt(111). J Chem Phys 97:6774–6783

    Article  CAS  Google Scholar 

  51. Freyer N, Pirug G, Bonzel HP (1983) C(1s) spectroscopy of hydrocarbons adsorbed on Pt(111). Surf Sci Lett 126:487–494

    Article  CAS  Google Scholar 

  52. Zhu Z, Butcher DR, Mao B et al (2013) In situ scanning tunneling microscopy and X-ray photoelectron spectroscopy studies of ethylene-induced structural changes on the Pt(100)-hex surface. J Phys Chem C 117:2799–2804

    Article  CAS  Google Scholar 

  53. Brown WA, Kose R, King DA (1999) Calorimetric measurements of the adsorption heat for ethene on Pt{211} and Pt{311}. Surf Sci 440:271–278

    Article  CAS  Google Scholar 

  54. Norton PR, Goodale JW, Selkirk EB (1979) Adsorption of co on Pt(111) studied by photoemission, thermal desorption spectroscopy and high resolution dynamic measurements of work function. Surf Sci 83:189–227

    Article  CAS  Google Scholar 

  55. Michaelides A, Hu P (2001) Catalytic water formation on platinum: a first-principles study. J Am Chem Soc 123:4235–4242

    Article  CAS  Google Scholar 

  56. Miller DJ, Öberg H, Kaya S et al (2011) Oxidation of Pt(111) under near-ambient conditions. Phys Rev Lett 107:195502

    Article  CAS  Google Scholar 

  57. Zhu Z, Tao FF, Zheng F et al (2012) Formation of nanometer-sized surface platinum oxide clusters on a stepped Pt(557) single crystal surface induced by oxygen: a high-pressure STM and ambient-pressure XPS study. Nano Lett 12:1491–1497

    Article  CAS  Google Scholar 

  58. Norton PR (1975) A photoelectron spectroscopic study of the adsorption and reactivity of oxygen on platinum. J Catal 36:211–223

    Article  CAS  Google Scholar 

  59. Schiros T, Näslund L-Å, Andersson K et al (2007) Structure and bonding of the water-hydroxyl mixed phase on Pt (111). J Phys Chem C 111:15003–15012

    Article  CAS  Google Scholar 

  60. Endo O, Nakamura M, Sumii R, Amemiya K (2012) 1D hydrogen bond chain on Pt(211) stepped surface observed by O K-NEXAFS spectroscopy. J Phys Chem C 116:13980–13984

    Article  CAS  Google Scholar 

  61. Yamamoto S, Andersson K, Bluhm H et al (2007) Hydroxyl-induced wetting of metals by water at near-ambient conditions. J Phys Chem C 111:7848–7850

    Article  CAS  Google Scholar 

  62. Yamamoto S, Kendelewicz T, Newberg JT et al (2010) Water adsorption on α-Fe2O3 (0001) at near ambient conditions. J Phys Chem C 114:2256–2266

    Article  CAS  Google Scholar 

  63. Andersson K, Ketteler G, Bluhm H et al (2008) Autocatalytic water dissociation on Cu(110) at near ambient conditions. J Am Chem Soc 130:2793–2797

    Article  CAS  Google Scholar 

  64. Wintterlin J, Volkening S, Janssens TVW et al (1997) Atomic and macroscopic reaction rates of a surface-catalyzed reaction. Science 278:1931–1934

    Article  CAS  Google Scholar 

  65. Freund HJ, Meijer G, Scheffler M et al (2011) CO oxidation as a prototypical reaction for heterogeneous processes. Angew Chem (Int Ed Engl) 50:10064–10094

    Article  CAS  Google Scholar 

  66. Vollmer S, Witte G, Wöll C (2001) Determination of site specific adsorption energies of CO on copper. Catal Lett 77:97–101

    Article  CAS  Google Scholar 

  67. Soon A, Todorova M, Delley B, Stampfl C (2006) Oxygen adsorption and stability of surface oxides on Cu(111): a first-principles investigation. Phys Rev B 73:1–12

    Article  Google Scholar 

  68. Duan X, Warschkow O, Soon A et al (2010) Density functional study of oxygen on Cu(100) and Cu(110) surfaces. Phys Rev B 81:1–15

    Google Scholar 

  69. Baro AM, Ibach H, Bruchmann HD (1979) Vibrational modes of hydrogen adsorbed on Pt(111): adsorption site and excitation mechanism. Surf Sci 88:384–398

    Article  CAS  Google Scholar 

  70. Lee J, Cowin JP, Wharton L (1983) He diffraction from clean Pt(111) and (1 × 1)H/Pt(111) surface. Surf Sci 130:1–28

    Article  CAS  Google Scholar 

  71. Umezawa K, Ito T, Asada M et al (1997) Adsorption of hydrogen on the Pt(111) surface from low-energy recoil scattering. Surf Sci 387:320–327

    Article  CAS  Google Scholar 

  72. Batra IP, Barker JA, Auerbach DJ (1984) Helium scattering from (1 × 1) H-Pt(111). J Vac Sci Technol A 2:943

    Article  CAS  Google Scholar 

  73. Christmann K (1988) Interaction of hydrogen with solid surfaces. Surf Sci Rep 9:1–163

    Article  Google Scholar 

  74. Cremer PS, Somorjai GA (1995) Surface science and catalysis of ethylene hydrogenation. J Chem Soc Faraday Trans 91:3671

    Article  CAS  Google Scholar 

  75. Zaera F, French CR (1999) Mechanistic changes in the conversion of ethylene to ethylidyne on transition metals induced by changes in surface coverages. J Am Chem Soc 121:2236–2243

    Article  CAS  Google Scholar 

  76. Starke U, Barbieri A, Materer N et al (1993) Ethylidyne on Pt(111): determination of adsorption site, substrate relaxation and coverage by automated tensor LEED. Surf Sci Lett 286:1–14

    Article  CAS  Google Scholar 

  77. Zaera F, Somorjai GA (1984) Hydrogenation of ethylene over platinum (1 11) single-crystal surfaces. J Am Chem Soc 106:2288–2293

    Article  CAS  Google Scholar 

  78. Öfner H, Zaera F (1997) Isothermal kinetic measurements for the hydrogenation of ethylene on Pt(111) under vacuum: significance of weakly-bound species in the reaction mechanism. J Phys Chem B 101:396–408

    Article  Google Scholar 

  79. Zaera F (1996) On the mechanism for the hydrogenation of olefins on transition-metal surfaces: the chemistry of ethylene on Pt(111). Langmuir 12:88–94

    Article  CAS  Google Scholar 

  80. Land TA, Michely T, Behm RJ et al (1991) STM investigation of the adsorption and temperature dependent reactions of ethylene on Pt(111). Appl Phys A 53:414–417

    Article  Google Scholar 

  81. Abon M, Billy J, Bertolini JC (1986) Ethylene and acetylene adsorption on a Pt(111) face: comparative Δφ and coverage measurements. Surf Sci Lett 171:L387–L394

    CAS  Google Scholar 

  82. Jensen JA, Rider KB, Salmeron M, Somorjai GA (1998) High pressure adsorbate structures studied by scanning tunneling microscopy: CO on Pt(111) in equilibrium with the gas phase. Phys Rev Lett 80:1228–1231

    Article  CAS  Google Scholar 

  83. Kruse Vestergaard E, Thostrup P, An T et al (2002) Comment on “high pressure adsorbate structures studied by scanning tunneling microscopy: CO on Pt(111) in equilibrium with the gas phase”. Phys Rev Lett 88:259601

    Article  CAS  Google Scholar 

  84. Chen P, Kung KY, Shen YR, Somorjai GA (2001) Sum frequency generation spectroscopic study of CO/ethylene coadsorption on the Pt(1 1 1) surface and CO poisoning of catalytic ethylene hydrogenation. Surf Sci 494:289–297

    Article  CAS  Google Scholar 

  85. Ainsworth MK, Mccoustra MRS, Chesters MA et al (1999) An infrared study of ethene and CO coadsorption on Pt [111] and a Pt/SiO2 catalyst: ambiguities in the interpretation of difference spectra. Surf Sci 437:9–17

    Article  CAS  Google Scholar 

  86. Seebauer EG, Kong ACF, Schmidt LD (1986) Adsorption and desorption of NO, CO and H2 on Pt (111): laser-induced thermal desorption studies. Surf Sci 176:134–156

    Article  CAS  Google Scholar 

  87. Tao F, Dag S, Wang L-W et al (2009) Restructuring of hex-Pt(100) under CO gas environments: formation of 2-D nanoclusters. Nano Lett 9:2167–2171

    Article  CAS  Google Scholar 

  88. Hatzikos GH, Masel RI (1987) Structure sensitivity of ethylene adsorption on Pt(100): evidence for vinylidene formation on (1 × 1) Pt(100). Surf Sci 185:479–494

    Article  CAS  Google Scholar 

  89. Montano M, Salmeron M, Somorjai GA (2006) STM studies of cyclohexene hydrogenation/dehydrogenation and its poisoning by carbon monoxide on Pt(111). Surf Sci 600:1809–1816

    Article  CAS  Google Scholar 

  90. Chen P, Westerberg S, Kung KY et al (2002) CO poisoning of catalytic ethylene hydrogenation on the Pt (1 1 1) surface studied by surface sum frequency generation. Appl Catal A 229:147–154

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering, of the U.S. Department of Energy (DOE) under Contract DE-AC02-05CH11231, through the Chemical and Mechanical Properties of Surfaces, Interfaces and Nanostructures program. C.H.W. acknowledges the ALS Doctoral Fellowship in Residence. B.E. acknowledges the Early Postdoc Mobility fellowship from the Swiss National Research Funds (SNF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel B. Salmeron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C.H., Eren, B. & Salmeron, M.B. Structure and Dynamics of Reactant Coadsorption on Single Crystal Model Catalysts by HP-STM and AP-XPS: A Mini Review. Top Catal 59, 405–419 (2016). https://doi.org/10.1007/s11244-015-0527-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0527-1

Keywords

Navigation