Topics in Catalysis

, Volume 59, Issue 5–7, pp 439–447 | Cite as

Operando X-Ray Photoelectron Spectroscopy Studies of Aqueous Electrocatalytic Systems

  • Hirohito Ogasawara
  • Sarp Kaya
  • Anders Nilsson
Original Paper


Development of efficient fuel cell and electrochemical cell devices to retrieve energy in a renewable manner lies in the molecular level understanding of the conversion processes taking place at surfaces and interfaces. These processes involve complicated bond breaking and formation at the surfaces as well as charge transfer through interfaces which are challenging to track under operational conditions. We address the nature of these interfacial processes using ambient pressure X-ray photoelectron spectroscopy by leveraging both its chemical and surface sensitivity. Herein, we give several examples of fuel cell and electrolysis reactions to demonstrate the importance of probing the surface under operating conditions. Oxygen reduction reaction taking place on the platinum cathode in proton exchange membrane fuel cells, water splitting reactions including oxygen evolution reaction over IrO2 and hydrogen evolution reaction over MoSx reveal that different species dominate on the surface under different operational conditions and surface activities are directly related to the stabilities of those intermediate species and possible structural rearrangements of the catalyst material.


Operando spectroscopy Electrochemistry X-ray photoelectron spectroscopy Fuel cell Electrolysis 



We gratefully acknowledge all the people involved in the various projects on which this contribution is based. In particular we like to highlight Hernan G. Sanchez Casalongue unique contribution to this project. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, as follows: the experimental work was supported by the Joint Center for Artificial Photosynthesis award no. DE-SC0004993. H.O. gratefully acknowledges the support from Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST). Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a division of SLAC National Accelerator Laboratory and an Office of Science user facility operated by Stanford University for the U.S. Department of Energy.


  1. 1.
    Ackermann MD, Pedersen TM, Hendriksen BLM, Robach O, Bobaru SC, Popa I, Quiros C, Kim H, Hammer B, Ferrer S, Frenken JWM (2005) Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation. Phys Rev Lett 95(25):255505CrossRefGoogle Scholar
  2. 2.
    Bazin D, Kovacs I, Guczi L, Parent P, Laffon C, De Groot F, Ducreux O, Lynch J (2000) Genesis of Co/SiO2 catalysts: XAS study at the cobalt L-III, absorption edges. J Catal 189(2):456–462CrossRefGoogle Scholar
  3. 3.
    de Smit E, de Groot FMF, Blume R, Havecker M, Knop-Gericke A, Weckhuysen BM (2010) The role of Cu on the reduction behavior and surface properties of Fe-based Fischer–Tropsch catalysts. Phys Chem Chem Phys 12(3):667–680CrossRefGoogle Scholar
  4. 4.
    de Smit E, Swart I, Creemer JF, Hoveling GH, Gilles MK, Tyliszczak T, Kooyman PJ, Zandbergen HW, Morin C, Weckhuysen BM, de Groot FMF (2008) Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy. Nature 456(7219):222–225CrossRefGoogle Scholar
  5. 5.
    Delgass WN, Haller GL, Kellerman R, Lunsfor JH (1979) Spectroscopy in Heterogeneous Catalysis. Academic Press, New YorkGoogle Scholar
  6. 6.
    Dumesic JA, Topsoe H (1977) Mössbauer spectroscopy applications to heterogeneous catalysis. Adv Catal 26:121–246Google Scholar
  7. 7.
    Ertl G, Knözinger H, Weitkamp J (eds) (1997) Handbook of heterogenous catalysis. VCN, WeinheimGoogle Scholar
  8. 8.
    Fisher IA, Bell AT (1997) In-situ infrared study of methanol synthesis from H2/CO2 over Cu/SiO2 and Cu/ZrO2/SiO2. J Catal 172(1):222–237CrossRefGoogle Scholar
  9. 9.
    Frenken J, Hendriksen B (2007) The reactor-STM: a real-space probe for operando nanocatalysis. MRS Bull 32(12):1015–1021CrossRefGoogle Scholar
  10. 10.
    Friebel D, Miller DJ, O’Grady CP, Anniyev T, Bargar J, Bergmann U, Ogasawara H, Wikfeldt KT, Pettersson LGM, Nilsson A (2010) In situ X-ray probing reveals fingerprints of surface platinum oxide. Phys Chem Chem Phys 13(1):262–266CrossRefGoogle Scholar
  11. 11.
    Gericke AK, Kleimenov E, Hävecker M, Blume R, Teschner D, Zafeiratos S, Schlögl R, Bukhtiyarov VI, Kaichev VV, Prosvirin IP, Nizovskii AI, Bluhm H, Barinov A, Dudin P, Kiskinova M (2009) X-ray photoelectron spectroscopy for investigation of heterogeneous catalytic processes. Adv Catal 52:213–272Google Scholar
  12. 12.
    Grunwaldt JD, Clausen BS (2002) Combining XRD and EXAFS with on-line catalytic studies for in situ characterization of catalysts. Top Catal 18(1–2):37–43CrossRefGoogle Scholar
  13. 13.
    Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsoe H (2002) Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295(5562):2053–2055CrossRefGoogle Scholar
  14. 14.
    Hansen TW, Wagner JB, Hansen PL, Dahl S, Topsoe H, Jacobsen CJH (2001) Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294(5546):1508–1510CrossRefGoogle Scholar
  15. 15.
    Hendriksen BLM, Bobaru SC, Frenken JWM (2005) Looking at heterogeneous catalysis at atmospheric pressure using tunnel vision. Top Catal 36(1–4):43–54CrossRefGoogle Scholar
  16. 16.
    Herbschleb CT, Bobaru SC, Frenken JWM (2010) High-pressure STM study of NO reduction by CO on Pt(100). Catal Today 154(1–2):61–67CrossRefGoogle Scholar
  17. 17.
    Herranz T, Deng XY, Cabot A, Guo JG, Salmeron M (2009) Influence of the cobalt particle size in the CO hydrogenation reaction studied by in situ X-ray absorption spectroscopy. J Phys Chem B 113(31):10721–10727CrossRefGoogle Scholar
  18. 18.
    Niemantsverdriet JW (2000) Spectroscopy in catalysis, 2nd edn. Wiley-VCN, WeinheimCrossRefGoogle Scholar
  19. 19.
    Osterlund L, Rasmussen PB, Thostrup P, Laegsgaard E, Stensgaard I, Besenbacher F (2001) Bridging the pressure gap in surface science at the atomic level: H/Cu(110). Phys Rev Lett 86(3):460–463CrossRefGoogle Scholar
  20. 20.
    Prins R, Koningsberger DC (eds) (1998) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New YorkGoogle Scholar
  21. 21.
    Salmeron M, Schlogl R (2008) Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf Sci Rep 63(4):169–199CrossRefGoogle Scholar
  22. 22.
    Singh J, Lamberti C, van Bokhoven JA (2010) Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chem Soc Rev 39(12):4754–4766CrossRefGoogle Scholar
  23. 23.
    Somorjai GA (2010) Introduction to surface chemistry and catalysis, 2nd edn. Wiley, New YorkGoogle Scholar
  24. 24.
    Somorjai GA, Li YM (2011) Impact of surface chemistry. Proc Natl Acad Sci USA 108(3):917–924CrossRefGoogle Scholar
  25. 25.
    Stierle A, Molenbroek AM (2007) Novel in situ probes for nanocatalysis. MRS Bull 32(12):1001–1005CrossRefGoogle Scholar
  26. 26.
    Thomas JM, Somorjai GA (1999) Untitled—preface. Top Catal 8(1–2):U1–U1CrossRefGoogle Scholar
  27. 27.
    Topsoe H (2003) Developments in operando studies and in situ characterization of heterogeneous catalysts. J Catal 216(1–2):155–164CrossRefGoogle Scholar
  28. 28.
    Yamamoto S, Bluhm H, Andersson K, Ketteler G, Ogasawara H, Salmeron M, Nilsson A (2008) In situ x-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions. J Phys Condens Matter 20(18):184025CrossRefGoogle Scholar
  29. 29.
    Nilsson A (2002) Applications of core level spectroscopy to adsorbates. J Electron Spectrosc Relat Phenom 126(1–3):3–42CrossRefGoogle Scholar
  30. 30.
    Kaya S, Ogasawara H, Näslund L-Å, Forsell J-O, Casalongue HS, Miller DJ, Nilsson A (2013) Ambient-pressure photoelectron spectroscopy for heterogeneous catalysis and electrochemistry. Catal Today 205:101–105CrossRefGoogle Scholar
  31. 31.
    Casalongue HS, Kaya S, Viswanathan V, Miller DJ, Friebel D, Hansen HA, Nørskov JK, Nilsson A, Ogasawara H (2013) Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nat Commun 4:2817–2822CrossRefGoogle Scholar
  32. 32.
    Casalongue HGS, Benck JD, Tsai C, Karlsson RKB, Kaya S, Ng ML, Pettersson LGM, Abild-Pedersen F, Nørskov JK, Ogasawara H, Jaramillo TF, Nilsson A (2014) Operando characterization of an amorphous molybdenum sulfide nanoparticle catalyst during the hydrogen evolution reaction. J Phys Chem C 118(50):29252–29259CrossRefGoogle Scholar
  33. 33.
    Sanchez Casalongue HG, Ng ML, Kaya S, Friebel D, Ogasawara H, Nilsson A (2014) In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew Chem Int Ed 53(28):7169–7172CrossRefGoogle Scholar
  34. 34.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892CrossRefGoogle Scholar
  35. 35.
    Markovic NM, Adzic RR, Cahan BD, Yeager EB (1994) Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J Electroanal Chem 377(1–2):249–259CrossRefGoogle Scholar
  36. 36.
    Wang JX, Uribe FA, Springer TE, Zhang J, Adzic RR (2009) Intrinsic kinetic equation for oxygen reduction reaction in acidic media: the double Tafel slope and fuel cell applications. Faraday Discuss 140:347–362CrossRefGoogle Scholar
  37. 37.
    Wang JX, Zhang J, Adzic RR (2007) Double-trap kinetic equation for the oxygen reduction reaction on pt(111) in acidic media. J Phys Chem A 111(49):12702–12710CrossRefGoogle Scholar
  38. 38.
    Schiros T, Näslund LÅ, Andersson K, Gyllenpalm J, Karlberg GS, Odelius M, Ogasawara H, Pettersson LGM, Nilsson A (2007) Structure and bonding of the water–hydroxyl mixed phase on Pt(111). J Phys Chem C 111(41):15003–15012CrossRefGoogle Scholar
  39. 39.
    MacNaughton JB, Näslund L-A, Anniyev T, Ogasawara H, Nilsson A (2010) Peroxide-like intermediate observed at hydrogen rich condition on Pt(111) after interaction with oxygen. Phys Chem Chem Phys 12(21):5712–5716CrossRefGoogle Scholar
  40. 40.
    Snyder J, Fujita T, Chen MW, Erlebacher J (2010) Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nat Mater 9(11):904–907CrossRefGoogle Scholar
  41. 41.
    Ogasawara H, Naslund LA, McNaughton J, Anniyev T, Nilsson A (2008) Double role of water in the fuel cell oxygen reduction reaction. ECS Trans 16(2):1385–1394CrossRefGoogle Scholar
  42. 42.
    Schiros T, Ogasawara H, Näslund LÅ, Andersson KJ, Ren J, Meng S, Karlberg GS, Odelius M, Nilsson A, Pettersson LGM (2010) Cooperativity in surface bonding and hydrogen bonding of water and hydroxyl at metal surfaces. J Phys Chem C 114(22):10240–10248CrossRefGoogle Scholar
  43. 43.
    Hitotsuyanagi A, Nakamura M, Hoshi N (2012) Structural effects on the activity for the oxygen reduction reaction on n(111)–(100) series of Pt: correlation with the oxide film formation. Electrochim Acta 82:512–516CrossRefGoogle Scholar
  44. 44.
    Maciá MD, Campiña JM, Herrero E, Feliu JM (2004) On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media. J Electroanal Chem 564:141–150CrossRefGoogle Scholar
  45. 45.
    Meyer TJ (1989) Chemical approaches to artificial photosynthesis. Acc Chem Res 22(5):163–170CrossRefGoogle Scholar
  46. 46.
    McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135(45):16977–16987CrossRefGoogle Scholar
  47. 47.
    Pauporté T, Andolfatto F, Durand R (1999) Some electrocatalytic properties of anodic iridium oxide nanoparticles in acidic solution. Electrochim Acta 45(3):431–439CrossRefGoogle Scholar
  48. 48.
    Steegstra P, Ahlberg E (2012) In situ pH measurements with hydrous iridium oxide in a rotating ring disc configuration. J Electroanal Chem 685:1–7CrossRefGoogle Scholar
  49. 49.
    Yagi M, Tomita E, Kuwabara T (2005) Remarkably high activity of electrodeposited IrO2 film for electrocatalytic water oxidation. J Electroanal Chem 579(1):83–88CrossRefGoogle Scholar
  50. 50.
    Frame FA, Townsend TK, Chamousis RL, Sabio EM, Dittrich T, Browning ND, Osterloh FE (2011) Photocatalytic water oxidation with nonsensitized IrO2 nanocrystals under visible and UV light. J Am Chem Soc 133(19):7264–7267CrossRefGoogle Scholar
  51. 51.
    Bozack MJ (1993) Sputter-induced modifications of IrO2 during XPS measurements. Surf Sci Spectra 2(2):123–127CrossRefGoogle Scholar
  52. 52.
    Augustynski J, Koudelka M, Sanchez J, Conway BE (1984) ESCA study of the state of iridium and oxygen in electrochemically and thermally formed iridium oxide films. J Electroanal Chem Interfacial Electrochem 160(1–2):233–248CrossRefGoogle Scholar
  53. 53.
    Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607(1–2):83–89CrossRefGoogle Scholar
  54. 54.
    Steegstra P, Ahlberg E (2012) Influence of oxidation state on the pH dependence of hydrous iridium oxide films. Electrochim Acta 76:26–33CrossRefGoogle Scholar
  55. 55.
    Kötz R, Neff H, Stucki S (1984) Anodic iridium oxide films: XPS-studies of oxidation state changes and O2-evolution. J Electrochem Soc 131(1):72–77CrossRefGoogle Scholar
  56. 56.
    Lyons MEG, Floquet S (2011) Mechanism of oxygen reactions at porous oxide electrodes. part 2-Oxygen evolution at RuO2, IrO2 and IrxRu1−xO2 electrodes in aqueous acid and alkaline solution. Phys Chem Chem Phys 13(12):5314–5335CrossRefGoogle Scholar
  57. 57.
    Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127(15):5308–5309CrossRefGoogle Scholar
  58. 58.
    Yan Y, Xia B, Xu Z, Wang X (2014) Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal 4(6):1693–1705CrossRefGoogle Scholar
  59. 59.
    Wu Z, Fang B, Wang Z, Wang C, Liu Z, Liu F, Wang W, Alfantazi A, Wang D, Wilkinson DP (2013) MoS2 nanosheets: a designed structure with high active site density for the hydrogen evolution reaction. ACS Catal 3(9):2101–2107CrossRefGoogle Scholar
  60. 60.
    Benck JD, Chen Z, Kuritzky LY, Forman AJ, Jaramillo TF (2012) Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal 2(9):1916–1923CrossRefGoogle Scholar
  61. 61.
    Merki D, Hu X (2011) Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ Sci 4(10):3878–3888CrossRefGoogle Scholar
  62. 62.
    Vrubel H, Merki D, Hu X (2012) Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ Sci 5(3):6136–6144CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hirohito Ogasawara
    • 1
    • 2
  • Sarp Kaya
    • 2
    • 3
    • 4
  • Anders Nilsson
    • 2
    • 3
    • 5
  1. 1.Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkUSA
  2. 2.SUNCAT Center for Interface Science and CatalysisSLAC National Accelerator LaboratoryMenlo ParkUSA
  3. 3.Joint Center for Artificial Photosynthesis (JCAP) Energy Innovation HubLBNLBerkeleyUSA
  4. 4.Department of ChemistryKoç UniversityIstanbulTurkey
  5. 5.Department of Physics, AlbaNova University CenterStockholm UniversityStockholmSweden

Personalised recommendations