Skip to main content
Log in

Investigation of Li-Ion Solvation in Carbonate Based Electrolytes Using Near Ambient Pressure Photoemission

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The near ambient pressure photoemission (NAPP) technique equipped with a liquid jet (LJ) is used for the first time to explore the electronic structure of the most commonly employed carbonate based Li-ion battery electrolytes. Experiments were performed at the SIM beamline of the Swiss Light Source (SLS) with the purpose of monitoring the Li-ion (Li+, Li 1s) solvation of 1M LiClO4 in 1:1 EC:DMC, both anhydrous and with the addition of 5 % H2O, and in DMSO. These electrolytes have high vapor pressures that prevent their study by traditional XPS and therefore necessitate the use of NAPP. Our measurements show differences in binding energies between the Cl 2p and Li 1s core levels (ΔE = Cl 2p3/2−Li 1s) between different solvents, in particularly between the EC:DMC and the DMSO. The addition of only 5 % H2O clearly influences the electronic structure in DMC:EC, but to a lesser extent than completely changing the solvent. Density functional theory (DFT) calculations of solvated Li+ structures within the solvent-separated ion pair (SSIP) model provide support to our experimental findings by revealing that the observed ΔE between solvents is directly related to the change in the electronic structure of the Li+ cation and ClO4 anion due to the modification of the solvation shell. This study establishes LJ NAPP as a powerful analytical method for the study of Li+ solvation that will prove complementary to the more established approaches of FTIR and NMR, but at the same time will allow for new experiments that cannot yet be realized by FTIR and NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. International Energy Outlook (2013) U.S. Energy Information Administration, DOE/EIA-0484 www.eia.gov/ieo

  2. Goodenough JB (2012) Rechargeable batteries: challenges old and new. J Solid State Electrochem 16:2019–2029

    Article  CAS  Google Scholar 

  3. Kang X (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417

    Article  Google Scholar 

  4. Kang X (2014) Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem Rev 114:11503–11618

    Article  Google Scholar 

  5. Villevieille C, Sasaki T, Novák P (2014) Novel electrochemical cell designed for operando techniques and impedance studies. RSC Adv 4:6782–6789

    Article  CAS  Google Scholar 

  6. Godbole VA, Hess M, Villevieille C, Kaiser H, Colin JF, Novák P (2013) Circular in situ neutron powder diffraction cell for study of reaction mechanism in electrode materials for Li-ion batteries. RSC Adv 3:757–763

    Article  CAS  Google Scholar 

  7. Bleith P, Van Beek W, Kaiser H, Novák P, Villevieille C (2015) Simultaneous in situ x-ray absorption spectroscopy and x-ray diffraction studies on battery materials: the case of Fe0.5TiOPO4. J Phys Chem C 119:3466–3471

    Article  CAS  Google Scholar 

  8. Gu M, Parent LR, Mehdi BL, Unocic RR, McDowell MT, Sacci RL, Xu W, Connell JG, Xu P, Abellan P, Chen X, Zhang Y, Perea DE, Evans JE, Lauhon LJ, Zhang JG, Liu J, Browning ND, Cui Y, Arslan I, Wang CM (2013) Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett 13:6106–6112

    Article  CAS  Google Scholar 

  9. Villevieille C, Ebner M, Gómez-Cámer JL, Marone F, Novák P, Wood V (2015) Influence of conversion material morphology on electrochemistry studied with operando x-ray tomography and diffraction. Adv Mater 27:1676–1681

    Article  CAS  Google Scholar 

  10. Pérez-Villar S, Lanz P, Schneider H, Novák P (2013) Characterization of a model solid electrolyte interphase/carbon interface by combined in situ Raman/Fourier transform infrared microscopy. Electrochim Acta 106:506–515

    Article  Google Scholar 

  11. Lanz P, Novák P (2014) Combined in situ Raman and IR microscopy at the interface of a single graphite particle with ethylene carbonate/dimethyl carbonate. J Electrochem Soc 161:A1555–A1563

    Article  CAS  Google Scholar 

  12. Chen D, Indris S, Schulz M, Gamer B, Mönig R (2011) In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid. J Power Sources 196:6382–6387

    Article  CAS  Google Scholar 

  13. Beaulieu LY, Hatchard TD, Bonakdarpour A, Fleischauer MD, Dahn JR (2003) Reaction of Li with alloy thin films studied by in situ AFM. J Electrochem Soc 150:A1457–A1464

    Article  CAS  Google Scholar 

  14. Castel E, Berg EJ, El Kazzi M, Novák P, Villevieille C (2014) Differential electrochemical mass spectrometry study of the interface of xLi2MnO3(1−x) LiMO2 (M=Ni Co, and Mn) Material as a positive electrode in Li-Ion batteries. Chem Mater 26:5051–5057

    Article  CAS  Google Scholar 

  15. Malmgrena S, Cioseka K, Hahlina M, Gustafssona T, Gorgoic M, Rensmob H, Edström K (2013) Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy. Electrochim Acta 97:23–32

    Article  Google Scholar 

  16. Lu YC, Crumlin EJ, Veith GM, Harding JR, Mutoro E, Baggetto L, Dudney NJ, Liu Z, Shao-Horn Y (2012) In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions. Sci Rep 2:715

    Google Scholar 

  17. Burba CM, Frech R (2005) Spectroscopic measurements of ionic association in solutions of LiPF6. J Phys Chem B 109:15161–15164

    Article  CAS  Google Scholar 

  18. Foley MP, Worosz CJ, Sweely K, Henderson WA, De Long HC, Trulove PC (2013) Phase behavior and solvation of lithium trifluoromethanesulfonate in propylene carbonate. ECS Trans 45:41–47

    Article  Google Scholar 

  19. Matsubara K, Kaneuchi R, Maekita N (1998) 13C NMR estimation of preferential solvation of lithium ions in non-aqueous mixed solvents. Chem Soc Faraday Trans 94:3601–3605

    Article  CAS  Google Scholar 

  20. Starr DE, Liu Z, Hävecker M, Knop-Gericke A, Bluhm H (2013) Ivestigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem Soc Rev 42:5833–5857

    Article  CAS  Google Scholar 

  21. Brown MA, Seidel R, Thurmer S, Faubel M, Hemminger JC, Van Bokhoven JA, Winter B, Sterre M (2011) Electronic structure of sub-10 nm colloidal silica nanoparticles measured by in situ photoelectron spectroscopy at the aqueous-solid interface. Phys Chem Chem Phys 13:12720–12723

    Article  CAS  Google Scholar 

  22. Bluhm H (2010) Photoelectron spectroscopy of surfaces under humid conditions. J Electron Spectrosc Relat Phenom 177:71–84

    Article  CAS  Google Scholar 

  23. Brown MA, Faubel M, Winter B (2009) X-ray photo- and resonant auger-electron spectroscopy studies of liquid water and aqueous solutions. Ann Rep Prog Chem Sect C 105:174–212

    Article  CAS  Google Scholar 

  24. Brown MA, Winter B, Faubel M, Hemminger JC (2009) The spatial distribution of nitrate and nitrite anions at the liquid/vapor interface of aqueous solutions. J Am Chem Soc 131:8354–8355

    Article  CAS  Google Scholar 

  25. Tao F, Grass ME, Zhang YW, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322:932–934

    Article  CAS  Google Scholar 

  26. Nolting D, Aziz EF, Ottosson N, Faubel M, Hertel IV, Winter B (2007) pH-induced protonation of lysine in aqueous solution causes chemical shifts in X-ray photoelectron spectroscopy. J Am Chem Soc 129:14068–14073

    Article  CAS  Google Scholar 

  27. Brown MA, Beloqui Redondo A, Sterrer M, Winter B, Pacchioni G, Abbas Z, Van Bokhoven JA (2013) Measure of surface potential at the aqueous-oxide nanoparticle interface by XPS from a liquid microjet. Nano Lett 13:5403–5407

    Article  CAS  Google Scholar 

  28. Pruyne JG, Lee M-T, Fábri C, Beloqui Redondo A, Kleibert A, Ammann M, Brown MA, Krisch MJ (2014) The liquid-vapor interface of formic acid solutions in salt water: a comparison of macroscopic surface tension and microscopic X-ray photoelectron spectroscopy measurements. J Phys Chem C 118:29350–29360

    Article  CAS  Google Scholar 

  29. Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M (1997) Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. J Power Sources 68:91–98

    Article  CAS  Google Scholar 

  30. Trahan MJ, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2013) Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte. J Electrochem Soc 160:A259–A267

    Article  CAS  Google Scholar 

  31. Flechsig U, Nolting F, Fraile Rodriguez A, Krempasky J, Quitmann C, Schmidt T, Spielmann S, Zimoch D (2010) Performance measurements at the SLS SIM beamline. AIP Conf Proc 1234:319–322

  32. Winter B, Faubel M (2006) Photoemission from liquid aqueous solutions. Chem Rev 106:1176–1211

    Article  CAS  Google Scholar 

  33. Brown MA, Jordan I, Redondo AB, Kleibert A, Wörner HJ, Van Bokhoven JA (2013) In situ photoelectron spectroscopy at the liquid/nanoparticle interface. Surf Sci 610:1–6

    Article  CAS  Google Scholar 

  34. Brown MA, Beloqui Redondo A, Jordan I, Duyckaerts N, Lee M-T, Ammann M, Nolting F, Kleibert A, Huthwelker T, Machler J-P, Birrer M, Honegger J, Wetter R, Wörner HJ, Van Bokhoven JA (2013) A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions. Rev Sci Instrum 84:073904

    Article  Google Scholar 

  35. Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  36. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59:7413–7421

    Article  Google Scholar 

  37. Hermann K, Pettersson LGM, Casida ME, Daul C, Goursot A, Koester A, Proynov E, St-Amant A, Salahub DR, Carravetta V, Duarte A, Godbout N, Guan J, Jamorski C, Leboeuf M, Leetmaa M, Nyberg M, Pedocchi L, Sim F, Triguero L, Vela A (2005) StoBe-deMon, deMon Software. Stockholm, Berlin

    Google Scholar 

  38. Weingarth D, Czekaj I, Fei Z, Foelske A, Dyson P, Wokaun A, Kötz R (2012) Electrochemical stability of imidazolium based ionic liquids containing cyano groups in the anion: a cyclic voltammetry, XPS and DFT study. J Electrochem Soc 159:H611–H615

    Article  CAS  Google Scholar 

  39. Nicosia D, Czekaj I, Kröcher O (2008) Chemical deactivation of V2O5/WO3–TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution: part II. Characterization study of the effect of alkali and alkaline earth metals. Appl Catal B 77:228–236

    Article  CAS  Google Scholar 

  40. Tenney CM, Cygan RT (2013) Analysis of molecular clusters in simulations of lithium-ion battery electrolytes. J Phys Chem C 117:24673–24684

    Article  CAS  Google Scholar 

  41. Olivieri G, Goel A, Kleibert A, Brown MA (2015) Effect of X-ray spot size on liquid jet photoemission spectroscopy. J Synchrotron Radiat 22:1528–1530

    Article  Google Scholar 

  42. Solvent vapor pressure, EC: 0.01 mmHg (25 °C), DMC: 18 mmHg (21 °C) and DMSO: 0.4 mmHg (20 °C) http://pubchem.ncbi.nlm.nih.gov Open chemistry database

  43. Siegbahn H, Siegbahn K (1973) ESCA applied to liquids. J Electron Spectrosc Relat Phenom 2:319–325

    Article  CAS  Google Scholar 

  44. Gelius U, Svensson S, Siegbahn H, Basilier E, Faxalv A, Siegbahn K (1974) Chem Phys Lett 28:1

    Article  CAS  Google Scholar 

  45. Wiklund M, Jaworowski A, Strisland F, Beutler A, Sandell A, Nyholm R, Sorensen SL, Andersen JN (1998) Vibrational fine structure in the C 1s photoemission spectrum of the methoxy species chemisorbed on Cu(100). Surf Sci 418:210–218

    Article  CAS  Google Scholar 

  46. Laurence C, Gal JF (2010) Lewis basicity and affinity scales data and measurement (chapter 2). Wiley, Hoboken

    Google Scholar 

  47. Skarmoutsos I, Ponnuchamy V, Vetere V, Mossa S (2015) Li+ solvation in pure, binary, and ternary mixtures of organic carbonate electrolytes. J Phys Chem C 119:4502–4515

    Article  CAS  Google Scholar 

  48. Jang DH, Oh SM (1997) Electrolyte effects on spinel dissolution and cathodic capacity losses in 4V Li/LixMn2O4 rechargeable cells. J Electrochem Soc 144:3342–3348

    Article  CAS  Google Scholar 

  49. Weingarth D, Foelske-Schmitz A, Wokaun A, Kötz R (2011) In situ electrochemical XPS study of the Pt/[EMIM][BF4] system. Electrochem Commun 11:619–622

    Article  Google Scholar 

Download references

Acknowledgments

The NAPP endstation of the Swiss Light Source is supported by PSI and an SNF R’Equip (No. 139139) grant. The authors are grateful to Dr. Armin Kleibert for his tremendous support at the SIM beamline. M.A.B. acknowledges Prof. Nicholas D. Spencer and the LSST at ETH Zürich for continued support. The implementation of the LJ at the SLS benefitted over the years from the continued support and enthusiasm of Prof. M. Ammann and Prof. J. van Bokhoven.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mario El Kazzi or Matthew A. Brown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Kazzi, M., Czekaj, I., J. Berg, E. et al. Investigation of Li-Ion Solvation in Carbonate Based Electrolytes Using Near Ambient Pressure Photoemission. Top Catal 59, 628–634 (2016). https://doi.org/10.1007/s11244-015-0518-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0518-2

Keywords

Navigation