Skip to main content
Log in

Hydrogen Intercalation of Graphene and Boron Nitride Monolayers Grown on Pt(111)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

H2 atmosphere is often involved in growth and application of two-dimensional (2D) atomic crystals, and it is of great importance to understand interaction of the 2D materials with H2 molecules. Here, a full graphene layer and a full hexagonal boron nitride (h-BN) layer grown on Pt(111) were exposed to H2 atmosphere, which were investigated by in situ near ambient pressure X-ray photoelectron spectroscopy and quasi in situ ultraviolet photoelectron spectroscopy. We confirm the occurrence of hydrogen intercalation of the graphene and h-BN overlayers in ambient pressure H2. The hydrogen intercalation in 0.1 Torr H2 at room temperature and hydrogen desorption in 0.1 Torr H2 at 200 °C are fully reversible on the graphene/Pt(111) and h-BN/Pt(111) surfaces. Furthermore, hydrogen desorption on the graphene/Pt(111) and h-BN/Pt(111) surfaces was found to happen at lower temperature than that on the Pt(111) surface due to the graphene and h-BN cover effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Prasai D, Tuberquia JC, Harl RR, Jennings GK, Bolotin KI (2012) ACS Nano 6:1102

    Article  CAS  Google Scholar 

  2. Chen SS, Brown L, Levendorf M, Cai WW, Ju SY, Edgeworth J, Li XS, Magnuson CW, Velamakanni A, Piner RD, Kang JY, Park J, Ruoff RS (2011) ACS Nano 5:1321

    Article  CAS  Google Scholar 

  3. Kang D, Kwon JY, Cho H, Sim JH, Hwang HS, Kim CS, Kim YJ, Ruoff RS, Shin HS (2012) ACS Nano 6:7763

    Article  CAS  Google Scholar 

  4. Raman RKS, Banerjee PC, Lobo DE, Gullapalli H, Sumandasa M, Kumar A, Choudhary L, Tkacz R, Ajayan PM, Majumder M (2012) Carbon 50:4040

    Article  Google Scholar 

  5. Kong XK, Chen CL, Chen QW (2014) Chem Soc Rev 43:2841

    Article  CAS  Google Scholar 

  6. Machado BF, Serp P (2012) Catal Sci Technol 2:54

    Article  CAS  Google Scholar 

  7. Yao YX, Fu Q, Zhang YY, Weng XF, Li H, Chen MS, Jin L, Dong AY, Mu RT, Jiang P, Liu L, Bluhm H, Liu Z, Zhang SB, Bao XH (2014) Proc Natl Acad Sci USA 111:17023

    Article  CAS  Google Scholar 

  8. Fu Q, Bao XH (2015) Chin J Catal 36:517

    Article  CAS  Google Scholar 

  9. Dong AY, Fu Q, Wei MM, Liu Y, Ning YX, Yang F, Bluhm H, Bao XH (2015) Surf Sci 634:37

    Article  CAS  Google Scholar 

  10. Feng XF, Maier S, Salmeron M (2012) J Am Chem Soc 134:5662

    Article  CAS  Google Scholar 

  11. Grånäs E, Knudsen J, Schröder UA, Gerber T, Busse C, Arman MA, Schulte K, Andersen JN, Michely T (2012) ACS Nano 6:9951

    Article  Google Scholar 

  12. Grånäs E, Andersen M, Arman MA, Gerber T, Hammer B, Schnadt J, Andersen JN, Michely T, Knudsen J (2013) J Phys Chem C 117:16438

    Article  Google Scholar 

  13. Mu RT, Fu Q, Jin L, Yu L, Fang GZ, Tan DL, Bao XH (2012) Angew Chem Int Ed 51:4856

    Article  CAS  Google Scholar 

  14. Jin L, Fu Q, Dong AY, Ning YX, Wang ZJ, Bluhm H, Bao XH (2014) J Phys Chem C 118:12391

    Article  CAS  Google Scholar 

  15. Zhang H, Fu Q, Cui Y, Tan DL, Bao XH (2009) J Phys Chem C 113:8296

    Article  CAS  Google Scholar 

  16. Ng ML, Shavorskiy A, Rameshan C, Mikkelsen A, Lundgren E, Preobrajenski A, Bluhm H (2015) ChemPhysChem 16:923

    Article  CAS  Google Scholar 

  17. Lizzit S, Larciprete R, Lacovig P, Dalmiglio M, Orlando F, Baraldi A, Gammelgaard L, Barreto L, Bianchi M, Perkins E, Hofmann P (2012) Nano Lett 12:4503

    Article  CAS  Google Scholar 

  18. Larciprete R, Ulstrup S, Lacovig P, Dalmiglio M, Bianchi M, Mazzola F, Hornekær L, Orlando F, Baraldi A, Hofmann P, Lizzit S (2012) ACS Nano 6:9551

    Article  CAS  Google Scholar 

  19. Zhang YH, Weng XF, Li H, Li HB, Wei MM, Xiao JP, Liu Z, Chen MS, Fu Q, Bao XH (2015) Nano Lett 15:3616

    Article  CAS  Google Scholar 

  20. Blume R, Kidambi PR, Bayer BC, Weatherup RS, Wang ZJ, Weinberg G, Willinger MG, Greiner M, Hofmann S, Knop-Gericke A, Schlögl R (2014) Phys Chem Chem Phys 16:25989

    Article  CAS  Google Scholar 

  21. Zhao W, Gebhardt J, Späth F, Gotterbarm K, Gleichweit C, Steinrück HP, Görling A, Papp C (2015) Chem Eur J 21:3347

    Article  CAS  Google Scholar 

  22. Hornekær L, Šljivančanin Ž, Xu W, Otero R, Rauls E, Stensgaard I, Lægsgaard E, Hammer B, Besenbacher F (2006) Phys Rev Lett 96:156104

    Article  Google Scholar 

  23. Nikitin A, Näslund LÅ, Zhang Z, Nilsson A (2008) Surf Sci 602:2575

    Article  CAS  Google Scholar 

  24. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Science 323:610

    Article  CAS  Google Scholar 

  25. Zhang HX, Feng PX (2012) ACS Appl Mater Interfaces 4:30

    Article  Google Scholar 

  26. Koswattage KR, Shimoyama I, Baba Y, Sekiguchi T, Nakagawa K (2011) J Chem Phys 135:014706

    Article  Google Scholar 

  27. Ng ML, Balog R, Hornekær L, Preobrajenski AB, Vinogradov NA, Mårtensson N, Schulte K (2010) J Phys Chem C 114:18559

    Article  CAS  Google Scholar 

  28. Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Lægsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen TG, Hofmann P, Hornekær L (2010) Nat Mater 9:315

    Article  CAS  Google Scholar 

  29. Riedl C, Coletti C, Iwasaki T, Zakharov AA, Starke U (2009) Phys Rev Lett 103:246804

    Article  CAS  Google Scholar 

  30. Brugger T, Ma HF, Iannuzzi M, Berner S, Winkler A, Hutter J, Osterwalder J, Greber T (2010) Angew Chem Int Ed 49:6120

    Article  CAS  Google Scholar 

  31. Balog R, Andersen M, Jørgensen B, Sljivancanin Z, Hammer B, Baraldi A, Larciprete R, Hofmann P, Hornekær L, Lizzit S (2013) ACS Nano 7:3823

    Article  CAS  Google Scholar 

  32. Starr DE, Liu Z, Hävecker M, Knop-Gericke A, Bluhm H (2013) Chem Soc Rev 42:5833

    Article  CAS  Google Scholar 

  33. Ogletree DF, Bluhm H, Hebenstreit ED, Salmeron M (2009) Nucl Instrum Methods Phys Res Sect A 601:151

    Article  Google Scholar 

  34. Wang ZJ, Wei MM, Jin L, Ning YX, Yu L, Fu Q, Bao XH (2013) Nano Res 6:399

    Article  CAS  Google Scholar 

  35. Wei MM, Fu Q, Dong AY, Wang ZJ, Bao XH (2014) Top Catal 57:890

    Article  CAS  Google Scholar 

  36. Preobrajenski AB, Vinogradov AS, Ng ML, Ćavar E, Westerström R, Mikkelsen A, Lundgren E, Mårtensson N (2007) Phys Rev B 75:245412

    Article  Google Scholar 

  37. Ćavar E, Westerström R, Mikkelsen A, Lundgren E, Vinogradov AS, Ng ML, Preobrajenski AB, Zakharov AA, Mårtensson N (2008) Surf Sci 602:1722

    Article  Google Scholar 

  38. Gao M, Pan Y, Huang L, Hu H, Zhang LZ, Guo HM, Du SX, Gao HJ (2011) Appl Phys Lett 98:033101

    Article  Google Scholar 

  39. Otero G, González C, Pinardi AL, Merino P, Gardonio S, Lizzit S, Blanco-Rey M, Van de Ruit K, Flipse CFJ, Méndez J, de Andrés PL, Martín-Gago JA (2010) Phys Rev Lett 105:216102

    Article  CAS  Google Scholar 

  40. Tao F, Dag S, Wang LW, Liu Z, Butcher DR, Bluhm H, Salmeron M, Somorjai GA (2010) Science 327:850

    Article  CAS  Google Scholar 

  41. Ogasawara H, Brena B, Nordlund D, Nyberg M, Pelmenschikov A, Pettersson LGM, Nilsson A (2002) Phys Rev Lett 89:276102

    Article  CAS  Google Scholar 

  42. Lee J, Cowin JP, Wharton L (1983) Surf Sci 130:1

    Article  CAS  Google Scholar 

  43. Koeleman BJJ, Dezwart ST, Boers AL, Poelsema B, Verheij LK (1986) Phys Rev Lett 56:1152

    Article  CAS  Google Scholar 

  44. Jo SK (2015) Surf Sci 635:99

    Article  CAS  Google Scholar 

  45. Norton PR, Davies JA, Jackman TE (1982) Surf Sci 121:103

    Article  CAS  Google Scholar 

  46. Christmann K (1988) Surf Sci Rep 9:1

    Article  Google Scholar 

  47. Zhu JF, Kinne M, Fuhrmann T, Denecke R, Steinrück HP (2003) Surf Sci 529:384

    Article  CAS  Google Scholar 

  48. Zhu ZW, Tao F, Zheng F, Chang R, Li YM, Heinke L, Liu Z, Salmeron M, Somorjai GA (2012) Nano Lett 12:1491

    Article  CAS  Google Scholar 

  49. Preobrajenski AB, Nesterov MA, Ng ML, Vinogradov AS, Mårtensson N (2007) Chem Phys Lett 446:119

    Article  CAS  Google Scholar 

  50. Preobrajenski AB, Ng ML, Vinogradov AS, Mårtensson N (2008) Phys Rev B 78:073401

    Article  Google Scholar 

  51. Rajasekaran S, Kaya S, Abild-Pedersen F, Anniyev T, Yang F, Stacchiola D, Ogasawara H, Nilsson A (2012) Phys Rev B 86:075417

    Article  Google Scholar 

  52. Nagashima A, Tejima N, Gamou Y, Kawai T, Oshima C (1995) Phys Rev B 51:4606

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21222305, No. 21373208, and No. 21321002), and Ministry of Science and Technology of China (No. 2011CB932704 and No. 2013CB834603), and the Key Research Program of the Chinese Academy of Sciences. The Advanced Light Source and beamlines 11.0.2 and 9.3.2 are supported by the Director, Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences and Biosciences of the U.S. Department of Energy under contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, M., Fu, Q., Wu, H. et al. Hydrogen Intercalation of Graphene and Boron Nitride Monolayers Grown on Pt(111). Top Catal 59, 543–549 (2016). https://doi.org/10.1007/s11244-015-0516-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0516-4

Keywords

Navigation