Topics in Catalysis

, Volume 59, Issue 1, pp 37–45 | Cite as

Effect of Water on Ethanol Conversion over ZnO

Original Paper

Abstract

This work focuses on understanding the role of water on ethanol conversion over zinc oxide (ZnO). It was found that a competitive adsorption between ethanol and water occurs on ZnO, which leads to the blockage of the strong Lewis acid site by water on ZnO. As a result, both dehydration and dehydrogenation reactions are inhibited. However, the extent of inhibition for dehydration is orders of magnitude higher than that for dehydrogenation, leading to the shift of reaction pathway from ethanol dehydration to dehydrogenation. In the secondary reactions for acetaldehyde conversion, water inhibits the acetaldehyde aldol-condensation to crotonaldehyde, favoring the oxidation of acetaldehyde to acetic acid, and then to acetone via ketonization at high temperature (i.e., 400 °C).

Keywords

Ethanol ZnO Water dissociation Ketonization Aldol-condensation 

Supplementary material

11244_2015_503_MOESM1_ESM.docx (267 kb)
Supplementary material 1 (DOCX 267 kb)

References

  1. 1.
    Tanksale A, Beltramini JN, Lu GM (2010) A review of catalytic hydrogen production processes from biomass. Renew Sust Energ Rev 14:166–182CrossRefGoogle Scholar
  2. 2.
    Song H, Ozkan US (2009) Ethanol steam reforming over Co-based catalysts: role of oxygen mobility. J Catal 261:66–74CrossRefGoogle Scholar
  3. 3.
    Davidson SD, Sun JM, Hong YC, Karim AM, Datye AK, Wang Y (2014) The effect of ZnO addition on Co/C catalyst for vapor and aqueous phase reforming of ethanol. Catal Today 233:38–45CrossRefGoogle Scholar
  4. 4.
    Sun JM, Karim AM, Mei DH, Engelhard M, Bao XH, Wang Y (2015) New insights into reaction mechanisms of ethanol steam reforming on Co–ZrO2. Appl. Catal B 162:141–148CrossRefGoogle Scholar
  5. 5.
    Chiou JYZ, Siang JY, Yang SY, Ho KF, Lee CL, Yeh CT, Wang CB (2012) Pathways of ethanol steam reforming over ceria-supported catalysts. Int J Hydrog Energy 37:13667–13673CrossRefGoogle Scholar
  6. 6.
    Song H, Bao XG, Hadad CM, Ozkan US (2011) Adsorption/desorption behavior of ethanol steam reforming reactants and intermediates over supported cobalt catalysts. Catal Lett 141:43–54CrossRefGoogle Scholar
  7. 7.
    Baylon RAL, Sun J, Wang Y (2005) Conversion of ethanol to 1,3-butadiene over Na doped ZnxZryOz mixed metal oxides. Catal Today. doi:10.1016/j.cattod.2015.1004.1010 Google Scholar
  8. 8.
    Contreras JL, Salmones J, Colin-Luna JA, Nuno L, Quintana B, Cordova I, Zeifert B, Tapia C, Fuentes GA (2014) Catalysts for H-2 production using the ethanol steam reforming (a review). Int J Hydrog Energy 39:18835–18853CrossRefGoogle Scholar
  9. 9.
    Llorca J, Homs N, Sales J, Fierro JLG, de la Piscina PR (2004) Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol. J Catal 222:470–480CrossRefGoogle Scholar
  10. 10.
    Murthy RS, Patnaik P, Sidheswaran P, Jayamani M (1988) Conversion of ethanol to acetone over promoted iron-oxide catalysis. J Catal 109:298–302CrossRefGoogle Scholar
  11. 11.
    Sun JM, Mei DH, Karim AM, Datye AK, Wang Y (2013) Minimizing the formation of coke and methane on Co nanoparticles in steam reforming of biomass-derived oxygenates. ChemCatChem 5:1299–1303CrossRefGoogle Scholar
  12. 12.
    Sun J, Zhang H, Yu N, Davidson S, Wang Y (2015) Effect of cobalt particle size on acetone steam reforming. ChemCatChem 7:2932–2936CrossRefGoogle Scholar
  13. 13.
    Nakajima T, Nameta H, Mishima S, Matsuzaki I, Tanabe K (1994) A highly-active and highly selective oxide catalyst for the conversion of ethanol to acetone in the presence of water-vapor. J Mater Chem 4:853–858CrossRefGoogle Scholar
  14. 14.
    Lebarbier VM, Karim AM, Engelhard MH, Wu Y, Xu BQ, Petersen EJ, Datye AK, Wang Y (2011) The effect of zinc addition on the oxidation state of cobalt in Co/ZrO2 catalysts. ChemSusChem 4:1679–1684CrossRefGoogle Scholar
  15. 15.
    Woll C (2007) The chemistry and physics of zinc oxide surfaces. Prog Surf Sci 82:55–120CrossRefGoogle Scholar
  16. 16.
    Kunat M, Girol SG, Burghaus U, Woll C (2003) The interaction of water with the oxygen-terminated, polar surface of ZnO. J Phys Chem B 107:14350–14356CrossRefGoogle Scholar
  17. 17.
    Onsten A, Stoltz D, Palmgren P, Yu S, Gothelid M, Karlsson UO (2010) Water adsorption on ZnO(0001): transition from triangular surface structures to a disordered hydroxyl terminated phase. J Phys Chem C 114:11157–11161CrossRefGoogle Scholar
  18. 18.
    Sun J, Wang Y (2014) Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal 4:1078–1090CrossRefGoogle Scholar
  19. 19.
    Davidson SD, Zhang H, Sun JM, Wang Y (2014) Supported metal catalysts for alcohol/sugar alcohol steam reforming. Dalton Trans 43:11782–11802CrossRefGoogle Scholar
  20. 20.
    Sun JM, Zhu KK, Gao F, Wang CM, Liu J, Peden CHF, Wang Y (2011) Direct conversion of bio-ethanol to isobutene on nanosized ZnxZryOz mixed oxides with balanced acid–base sites. J Am Chem Soc 133:11096–11099CrossRefGoogle Scholar
  21. 21.
    Liu CJ, Sun JM, Smith C, Wang Y (2013) A study of ZnxZryOz mixed oxides for direct conversion of ethanol to isobutene. Appl Catal A 467:91–97CrossRefGoogle Scholar
  22. 22.
    Zaki MI, Hasan MA, Al-Sagheer FA, Pasupulety L (2001) In situ FTIR spectra of pyridine adsorbed on SiO2–Al2O3, TiO2, ZrO2 and CeO2: general considerations for the identification of acid sites on surfaces of finely divided metal oxides. Colloid Surf A 190:261–274CrossRefGoogle Scholar
  23. 23.
    Jones MD, Keir CG, Di Iulio C, Robertson RAM, Williams CV, Apperley DC (2011) Investigations into the conversion of ethanol into 1,3-butadiene. Catal Sci Technol 1:267–272CrossRefGoogle Scholar
  24. 24.
    Fujita S, Iwasa N, Tani H, Nomura W, Arai M, Takezawa N (2001) Dehydrogenation of ethanol over Cu/ZnO catalysts prepared from various coprecipitated precursors. React Kinet Catal Lett 73:367–372CrossRefGoogle Scholar
  25. 25.
    Inui K, Kurabayashi T, Sato S (2002) Direct synthesis of ethyl acetate from ethanol over Cu–Zn–Zr–Al–O catalyst. Appl Catal A 237:53–61CrossRefGoogle Scholar
  26. 26.
    Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal 3:2456–2473CrossRefGoogle Scholar
  27. 27.
    Makshina EV, Dusselier M, Janssens W, Degreve J, Jacobs PA, Sels BF (2014) Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene. Chem Soc Rev 43:7917–7953CrossRefGoogle Scholar
  28. 28.
    Di Cosimo JI, Apesteguia CR, Gines MJL, Iglesia E (2000) Structural requirements and reaction pathways in condensation reactions of alcohols an MgyAlOx catalysts. J Catal 190:261–275CrossRefGoogle Scholar
  29. 29.
    Pham TN, Shi DC, Resasco DE (2014) Reaction kinetics and mechanism of ketonization of aliphatic carboxylic acids with different carbon chain lengths over Ru/TiO2 catalyst. J Catal 314:149–158CrossRefGoogle Scholar
  30. 30.
    Sushkevich VL, Ivanova II, Ordomsky VV, Taarning E (2014) Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol. ChemSusChem 7:2527–2536CrossRefGoogle Scholar
  31. 31.
    Jones MD (2014) Catalytic transformation of ethanol into 1,3-butadiene. Chem Cent J 8:5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.The Gene and Linda Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanUSA
  2. 2.Institute for Integrated CatalysisPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations