Topics in Catalysis

, Volume 58, Issue 18–20, pp 1159–1173 | Cite as

On the Structure Sensitivity of Dimethyl Ether Electro-oxidation on Eight FCC Metals: A First-Principles Study

  • Jeffrey A. Herron
  • Peter Ferrin
  • Manos Mavrikakis
Original Paper


The electro-oxidation of dimethyl ether (DME) was investigated using periodic, self-consistent density functional theory (DFT) calculations on the (111) and (100) facets of eight fcc metals: Au, Ag, Cu, Pt, Pd, Ni, Ir, and Rh. The goal of this study is to understand the experimentally observed structure sensitivity of this reaction on Pt, and to predict trends in structure sensitivity of this reaction across the other seven metals studied. The main conclusion is that the enhanced activity of Pt(100) originates from more facile C–O bond breaking and removal of surface poisoning species, including CO and CH. When comparing C–O bond breaking energetics, we do not find a universal trend where these elementary steps are always more exergonic on the (100) facet. However, we find that, at a given potential, DME can be dehydrogenated (prior to breaking the C–O bond) to a greater extent on the (100) facet. Additionally, we find that the reaction energy for C–O bond breaking in CHxOCHy-type species becomes increasingly exergonic as the species becomes increasingly dehydrogenated. Together, the more facile dehydrogenation on the (100) facets provides more favorable routes to C–O bond activation. Though we calculate a lower onset potential on Au(100), Ag(100), Cu(100), Pt(100), and Pd(100) than their respective (111) facets, the calculated onset potential for Ni(100), Ir(100), and Rh(100) are actually higher than for their respective (111) facets. Finally, by constructing theoretical volcano plots, we conclude that Au(100), Ag(100), Cu(100), Pt(100), and Pd(100) should be more active than their respective (111) facets, while Ni(100), Rh(100), and Ir(100) will show the opposite trend.


Density functional theory Heterogeneous catalysis Thermochemistry Electrocatalysis Oxidation Dimethyl ether 



Prof. Vayenas has inspired many colleagues in the field of electrocatalysis, including these authors. We wish him the best on the occasion of his 65th birthday. This work was supported by DOE-BES, Office of Chemical Sciences. JAH thanks Air Products & Chemicals, Inc. for partial support through a graduate fellowship. Computational work was performed in part using supercomputing resources at the following institutions: EMSL, a National scientific user facility at Pacific Northwest National Laboratory (PNNL); the Center for Nanoscale Materials at Argonne National Laboratory (ANL); and the National Energy Research Scientific Computing Center (NERSC). EMSL is sponsored by the Department of Energy’s Office of Biological and Environmental Research located at PNNL. CNM, and NERSC are supported by the U.S. Department of Energy, Office of Science, under contracts DE-AC02-06CH11357, and DE-AC02-05CH11231, respectively.

Supplementary material

11244_2015_495_MOESM1_ESM.docx (4.1 mb)
Supplementary material 1 (DOCX 4172 kb)


  1. 1.
    Semelsberger TA, Borup RL, Greene HL (2006) Dimethyl ether (DME) as an alternative fuel. J Power Sources 156(2):497–511CrossRefGoogle Scholar
  2. 2.
    Floudas CA, Elia JA, Baliban RC (2012) Hybrid and single feedstock energy processes for liquid transportation fuels: a critical review. Comput Chem Eng 41:24–51CrossRefGoogle Scholar
  3. 3.
    Serov A, Kwak C (2009) Progress in development of direct dimethyl ether fuel cells. Appl Catal B 91(1–2):1–10CrossRefGoogle Scholar
  4. 4.
    Demirci UB (2007) Direct liquid-feed fuel cells: thermodynamic and environmental concerns. J Power Sources 169(2):239–246CrossRefGoogle Scholar
  5. 5.
    Yoo JH, Choi HG, Chung CH, Cho SM (2006) Fuel cells using dimethyl ether. J Power Sources 163(1):103–106CrossRefGoogle Scholar
  6. 6.
    Yu RH, Choi HG, Cho SM (2005) Performance of direct dimethyl ether fuel cells at low temperature. Electrochem Commun 7(12):1385–1388CrossRefGoogle Scholar
  7. 7.
    Kerangueven G, Coutanceau C, Sibert E, Leger JM, Lamy C (2006) Methoxy methane (dimethyl ether) as an alternative fuel for direct fuel cells. J Power Sources 157(1):318–324CrossRefGoogle Scholar
  8. 8.
    Kerangueven G, Coutanceau C, Sibert E, Hahn F, Leger JM, Lamy C (2006) Mechanism of di(methyl)ether (DME) electrooxidation at platinum electrodes in acid medium. J Appl Electrochem 36(4):441–448CrossRefGoogle Scholar
  9. 9.
    Heinzel A, Barragan VM (1999) A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources 84(1):70–74CrossRefGoogle Scholar
  10. 10.
    Wasmus S, Kuver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461(1–2):14–31CrossRefGoogle Scholar
  11. 11.
    Mizutani I, Liu Y, Mitsushima S, Ota KI, Kamiya N (2006) Anode reaction mechanism and crossover in direct dimethyl ether fuel cell. J Power Sources 156(2):183–189CrossRefGoogle Scholar
  12. 12.
    Muller JT, Urban PM, Holderich WF, Colbow KM, Zhang J, Wilkinson DP (2000) Electro-oxidation of dimethyl ether in a polymer-electrolyte-membrane fuel cell. J Electrochem Soc 147(11):4058–4060CrossRefGoogle Scholar
  13. 13.
    Liu Y, Mitsushima S, Ota K, Kamiya N (2006) Electro-oxidation of dimethyl ether on Pt/C and PtMe/C catalysts in sulfuric acid. Electrochim Acta 51(28):6503–6509CrossRefGoogle Scholar
  14. 14.
    Lu LL, Yin GP, Tong YJ, Zhang Y, Gao YZ, Osawa M, Ye S (2008) Electrochemical behaviors of dimethyl ether on platinum single crystal electrodes. Part I: Pt(111). J Electroanal Chem 619:143–151CrossRefGoogle Scholar
  15. 15.
    Lu LL, Yin GP, Tong YJ, Zhang Y, Gao YZ, Osawa M, Ye S (2010) Electrochemical behaviors of dimethyl ether on platinum single crystal electrodes. Part II: Pt(100). J Electroanal Chem 642(1):82–91CrossRefGoogle Scholar
  16. 16.
    Tong Y, Lu L, Zhang Y, Gao Y, Yin G, Osawa M, Ye S (2007) Surface structure dependent electro-oxidation of dimethyl ether on platinum single-crystal electrodes. J Phys Chem C 111(51):18836–18838CrossRefGoogle Scholar
  17. 17.
    Koper MTM (2011) Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 3(5):2054–2073CrossRefGoogle Scholar
  18. 18.
    Lu LL, Yin GP, Wang ZB, Gao YZ (2009) Electro-oxidation of dimethyl ether on platinum nanocubes with preferential 100 surfaces. Electrochem Commun 11(8):1596–1598CrossRefGoogle Scholar
  19. 19.
    Herron JA, Ferrin P, Mavrikakis M (2014) First-principles mechanistic analysis of dimethyl ether electro-oxidation on monometallic single-crystal surfaces. J Phys Chem C 118(42):24199–24211CrossRefGoogle Scholar
  20. 20.
    Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys Rev B 59(11):7413–7421CrossRefGoogle Scholar
  21. 21.
    Greeley J, Nørskov JK, Mavrikakis M (2002) Electronic structure and catalysis on metal surfaces. Annu Rev Phys Chem 53:319–348CrossRefGoogle Scholar
  22. 22.
    Ferrin P, Mavrikakis M (2009) Structure sensitivity of methanol electrooxidation on transition metals. J Am Chem Soc 131(40):14381–14389CrossRefGoogle Scholar
  23. 23.
    Ferrin P, Nilekar AU, Greeley J, Mavrikakis M, Rossmeisl J (2008) Reactivity descriptors for direct methanol fuel cell anode catalysts. Surf Sci 602(21):3424–3431CrossRefGoogle Scholar
  24. 24.
    Greeley J, Mavrikakis M (2002) A first-principles study of methanol decomposition on Pt(111). J Am Chem Soc 124(24):7193–7201CrossRefGoogle Scholar
  25. 25.
    Greeley J, Mavrikakis M (2004) Competitive paths for methanol decomposition on Pt(111). J Am Chem Soc 126(12):3910–3919CrossRefGoogle Scholar
  26. 26.
    CRC (2011) Handbook of chemistry and physics, 92nd edn. CRC Press, New YorkGoogle Scholar
  27. 27.
    Bengtsson L (1999) Dipole correction for surface supercell calculations. Phys Rev B 59(19):12301–12304CrossRefGoogle Scholar
  28. 28.
    Neugebauer J, Scheffler M (1992) Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys Rev B 46(24):16067–16080CrossRefGoogle Scholar
  29. 29.
    Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895CrossRefGoogle Scholar
  30. 30.
    Chadi DJ, Cohen ML (1973) Special points in Brillouin zone. Phys Rev B 8(12):5747–5753CrossRefGoogle Scholar
  31. 31.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192CrossRefGoogle Scholar
  32. 32.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces—applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46(11):6671–6687CrossRefGoogle Scholar
  33. 33.
    Greeley J, Mavrikakis M (2003) A first-principles study of surface and subsurface H on and in Ni(111): diffusional properties and coverage-dependent behavior. Surf Sci 540(2–3):215–229CrossRefGoogle Scholar
  34. 34.
    Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607(1–2):83–89CrossRefGoogle Scholar
  35. 35.
    Rossmeisl J, Logadottir A, Nørskov JK (2005) Electrolysis of water on (oxidized) metal surfaces. Chem Phys 319(1–3):178–184CrossRefGoogle Scholar
  36. 36.
    Karlberg GS, Rossmeisl J, Nørskov JK (2007) Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory. Phys Chem Chem Phys 9(37):5158–5161CrossRefGoogle Scholar
  37. 37.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892CrossRefGoogle Scholar
  38. 38.
    Herron JA, Ferrin P, Mavrikakis M (2015) Electrocatalytic oxidation of ammonia on transition-metal surfaces: a first-principles study. J Phys Chem C 119(26):14692–14701CrossRefGoogle Scholar
  39. 39.
    Logadottir A, Rod TH, Nørskov JK, Hammer B, Dahl S, Jacobsen CJH (2001) The Bronsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J Catal 197(2):229–231CrossRefGoogle Scholar
  40. 40.
    Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) Universality in heterogeneous catalysis. J Catal 209(2):275–278CrossRefGoogle Scholar
  41. 41.
    Ojeda M, Nabar R, Nilekar AU, Ishikawa A, Mavrikakis M, Iglesia E (2010) CO activation pathways and the mechanism of Fischer–Tropsch synthesis. J Catal 272(2):287–297CrossRefGoogle Scholar
  42. 42.
    Grabow LC, Hvolbaek B, Nørskov JK (2010) Understanding trends in catalytic activity: the effect of adsorbate–adsorbate interactions for CO oxidation over transition metals. Top Catal 53(5–6):298–310CrossRefGoogle Scholar
  43. 43.
    Miller SD, Inoglu N, Kitchin JR (2011) Configurational correlations in the coverage dependent adsorption energies of oxygen atoms on late transition metal fcc(111) surfaces. J Chem Phys 134(10):104709CrossRefGoogle Scholar
  44. 44.
    Wu C, Schmidt DJ, Wolverton C, Schneider WF (2012) Accurate coverage-dependence incorporated into first-principles kinetic models: catalytic NO oxidation on Pt (111). J Catal 286:88–94CrossRefGoogle Scholar
  45. 45.
    Getman RB, Xu Y, Schneider WF (2008) Thermodynamics of environment-dependent oxygen chemisorption on Pt(111). J Phys Chem C 112(26):9559–9572CrossRefGoogle Scholar
  46. 46.
    Desai S, Neurock M (2003) A first principles analysis of CO oxidation over Pt and Pt66.7%Ru33.3% (111) surfaces. Electrochim Acta 48(25–26):3759–3773CrossRefGoogle Scholar
  47. 47.
    Koper MTM (2005) Combining experiment and theory for understanding electrocatalysis. J Electroanal Chem 574(2):375–386CrossRefGoogle Scholar
  48. 48.
    Lew WD, Crowe MC, Karp E, Campbell CT (2011) Energy of molecularly adsorbed water on clean Pt(111) and Pt(111) with coadsorbed oxygen by calorimetry. J Phys Chem C 115(18):9164–9170CrossRefGoogle Scholar
  49. 49.
    Ogasawara H, Brena B, Nordlund D, Nyberg M, Pelmenschikov A, Pettersson LGM, Nilsson A (2002) Structure and bonding of water on Pt(111). Phys Rev Lett 89(27):276102CrossRefGoogle Scholar
  50. 50.
    Rossmeisl J, Greeley J, Karlberg GS (2008) Electrocatalysis and catalyst screening from density functional theory calculations. In: Koper MTM (ed) Fuel cell catalysis: a surface science approach. Wiley, HobokenGoogle Scholar
  51. 51.
    Mistry H, Reske R, Zeng ZH, Zhao ZJ, Greeley J, Strasser P, Cuenya BR (2014) Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc 136(47):16473–16476CrossRefGoogle Scholar
  52. 52.
    Karamad M, Tripkovic V, Rossmeisl J (2014) Intermetallic alloys as CO electroreduction catalysts—role of isolated active sites. ACS Catal 4(7):2268–2273CrossRefGoogle Scholar
  53. 53.
    Van Santen RA (2009) Complementary structure sensitive and insensitive catalytic relationships. Acc Chem Res 42(1):57–66CrossRefGoogle Scholar
  54. 54.
    Ciobica IM, van Santen RA (2003) Carbon monoxide dissociation on planar and stepped Ru(0001) surfaces. J Phys Chem B 107(16):3808–3812CrossRefGoogle Scholar
  55. 55.
    Andersson MP, Abild-Pedersen E, Remediakis IN, Bligaard T, Jones G, Engbwk J, Lytken O, Horch S, Nielsen JH, Sehested J, Rostrup-Nielsen JR, Nørskov JK, Chorkendorff I (2008) Structure sensitivity of the methanation reaction: H2-induced CO dissociation on nickel surfaces. J Catal 255(1):6–19CrossRefGoogle Scholar
  56. 56.
    Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Tornqvist E, Nørskov JK (1999) Role of steps in N2 activation on Ru(0001). Phys Rev Lett 83(9):1814–1817CrossRefGoogle Scholar
  57. 57.
    Spencer ND, Schoonmaker RC, Somorjai GA (1982) Iron single-crystals as ammonia-synthesis catalysts—effect of surface-structure on catalyst activity. J Catal 74(1):129–135CrossRefGoogle Scholar
  58. 58.
    Loffreda D, Simon D, Sautet P (2003) Structure sensitivity for NO dissociation on palladium and rhodium surfaces. J Catal 213(2):211–225CrossRefGoogle Scholar
  59. 59.
    Ge Q, Neurock M (2004) Structure dependence of NO adsorption and dissociation on platinum surfaces. J Am Chem Soc 126(5):1551–1559CrossRefGoogle Scholar
  60. 60.
    Liu ZP, Hu P (2003) General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C–O bond breaking/making on flat, stepped, and kinked metal surfaces. J Am Chem Soc 125(7):1958–1967CrossRefGoogle Scholar
  61. 61.
    Koper MTM (2011) Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J Electroanal Chem 660(2):254–260CrossRefGoogle Scholar
  62. 62.
    Li HJ, Calle-Vallejo F, Kolb MJ, Kwon Y, Li YD, Koper MTM (2013) Why (100) terraces break and make bonds: oxidation of dimethyl ether on platinum single-crystal electrodes. J Am Chem Soc 135(38):14329–14338CrossRefGoogle Scholar
  63. 63.
    Li HJ, Li YD, Koper MTM, Calle-Vallejo F (2014) Bond-making and breaking between carbon, nitrogen, and oxygen in electrocatalysis. J Am Chem Soc 136(44):15694–15701CrossRefGoogle Scholar
  64. 64.
    Lebedeva NP, Rodes A, Feliu JM, Koper MTM, van Santen RA (2002) Role of crystalline defects in electrocatalysis: CO adsorption and oxidation on stepped platinum electrodes as studied by in situ infrared spectroscopy. J Phys Chem B 106(38):9863–9872CrossRefGoogle Scholar
  65. 65.
    Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skulason E, Bligaard T, Nørskov JK (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99(1):016105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jeffrey A. Herron
    • 1
  • Peter Ferrin
    • 1
  • Manos Mavrikakis
    • 1
  1. 1.Department of Chemical and Biological EngineeringUniversity of Wisconsin – MadisonMadisonUSA

Personalised recommendations