Dry Reforming of Methane: Catalytic Performance and Stability of Ir Catalysts Supported on γ-Al2O3, Zr0.92Y0.08O2−δ (YSZ) or Ce0.9Gd0.1O2−δ (GDC) Supports


The impact of the support on the Ir-catalyzed dry (CO2) reforming of methane (DRM) reaction is explored in the present study. With this aim, supported iridium catalysts Ir/γ-Al2O3, Ir/YSZ and Ir/GDC with 1 wt% iridium loading, using γ-Al2O3, 8 mol% Y2O3 stabilized ZrO2 (YSZ: Zr0.92Y0.08O2−δ) and 10 mol% Gd2O3 doped CeO2 (GDC: Ce0.9Gd0.1O2−δ) as supports were comparatively studied in the temperature range of 400–850 °C. The feasibility of tuning the catalytic performance and/or stability of the Ir active phase during DRM reaction, via support-induced interactions, was investigated. All catalysts were found to be extremely active and stable over time on stream. No significant effects induced by the support were observed at the high operating temperature of DRM. However, opposite to Ir/γ-Al2O3 and Ir/YSZ samples, Ir/GDC provides the benefit to be stable in oxidation steps and/or oxidation–reduction cycles. This is of significant practical importance since such treatment procedures are often used in practice for catalysts regeneration. Besides catalytic performance measurements, extended hydrogen temperature-programmed reduction experiments, supported further by transmission electron microscopy characterization studies were carried out in order to reveal the impact of the support on the aforementioned stability and its origin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Panagiotopoulou P, Papadopoulou C, Matralis H, Verykios XE (2014) Production of renewable hydrogen by reformation of biofuels. Wiley Interdiscip Rev 3:231–253

    CAS  Article  Google Scholar 

  2. 2.

    Reddy GK, Loridant S, Takahashi A, Delichère P, Reddy BM (2010) Reforming of methane with carbon dioxide over Pt/ZrO2/SiO2 catalysts: effect of zirconia to silica ratio. Appl Catal A 389:92–100

    CAS  Article  Google Scholar 

  3. 3.

    Faroldi BM, Lombardo EA, Cornaglia LM (2009) Surface properties and catalytic behavior of Ru supported on composite La2O3–SiO2 oxides. Appl Catal A 369:15–26

    CAS  Article  Google Scholar 

  4. 4.

    Ghenciu AF (2002) Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr Opin Solid State Mater Sci 6:389–399

    Article  Google Scholar 

  5. 5.

    Verykios XE (2003) Catalytic dry reforming of natural gas for the production of chemicals and hydrogen. Int J Hydrog Energy 28:1045–1063

    CAS  Google Scholar 

  6. 6.

    Jóźwiak WK, Nowosielska M, Rynkowski J (2005) Reforming of methane with carbon dioxide over supported bimetallic catalysts containing Ni and noble metal: I. Characterization and activity of SiO2 supported Ni–Rh catalysts. Appl Catal A 280:233–244

    Article  Google Scholar 

  7. 7.

    Tankov I, Arishtirova K, Bueno JMC, Damyanova S (2014) Surface and structural features of Pt/PrO2–Al2O3 catalysts for dry methane reforming. Appl Catal A 474:135–148

    CAS  Article  Google Scholar 

  8. 8.

    Ferreira-Aparicio P, Fernandez-Garcia M, Guerrero-Ruiz A, Rodrı&guez-Ramos I (2000) Evaluation of the role of the metal-support interfacial centers in the dry reforming of methane on alumina-supported rhodium catalysts. J Catal 190:296–308

    CAS  Article  Google Scholar 

  9. 9.

    Stoukides M (2000) Solid-electrolyte membrane reactors: current experience and future outlook. Catal Rev Sci Eng 42:1–70

    CAS  Article  Google Scholar 

  10. 10.

    Vayenas CG, Debenedetti PG, Yentekakis I, Hegedus LL (1985) Cross-flow, solid-state electrochemical reactors: a steady state analysis. Ind Eng Chem Fundam 24:316–324

    CAS  Article  Google Scholar 

  11. 11.

    Yentekakis IV (2006) Open- and closed-circuit study of an intermediate temperature SOFC directly fueled with simulated biogas mixtures. J Power Sources 160:422–425

    CAS  Article  Google Scholar 

  12. 12.

    Goula G, Kiousis V, Nalbandian L, Yentekakis IV (2006) Catalytic and electrocatalytic behavior of Ni-based cermet anodes under internal dry reforming of CH4 + CO2 mixtures in SOFCs. Solid State Ion 177:2119–2123

    CAS  Article  Google Scholar 

  13. 13.

    Yentekakis IV, Papadam T, Goula G (2008) Electricity production from wastewater treatment via a novel biogas-SOFC aided process. Solid State Ion 179:1521–1525

    CAS  Article  Google Scholar 

  14. 14.

    Shiratori Y, Ijichi T, Oshima T, Sasaki K (2010) Internal reforming SOFC running on biogas. Int J Hydrog Energy 35:7905–79012

    CAS  Article  Google Scholar 

  15. 15.

    Lanzini A, Leone P, Pieroni M, Santarelli M, Beretta D, Ginocchio S (2011) Experimental investigations and modeling of direct internal reforming of biogases in tubular solid oxide fuel cells. Fuel Cells 11:697–710

    CAS  Article  Google Scholar 

  16. 16.

    Rathod V, Bhale PV (2014) Experimental investigation on biogas reforming for syngas production over an alumina based nickel catalyst. Energy Procedia 54:236–245

    CAS  Article  Google Scholar 

  17. 17.

    Barama S, Dupeyrat-Batiot C, Capron M, Bordes-Richard E, Bakhti-Mohammedi O (2009) Catalytic properties of Rh, Ni, Pd and Ce supported on Al-pillared montmorillonites in dry reforming of methane. Catal Today 141:385–392

    CAS  Article  Google Scholar 

  18. 18.

    García-Diéguez M, Finocchio E, Larrubia MÁ, Alemany LJ, Busca G (2010) Characterization of alumina-supported Pt, Ni and PtNi alloy catalysts for the dry reforming of methane. J Catal 274:11–20

    Article  Google Scholar 

  19. 19.

    Zhang Z, Verykios XE (1996) Carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts. Appl Catal A 138:109–133

    CAS  Article  Google Scholar 

  20. 20.

    Pietraszek A, Koubaissy B, Roger AC, Kiennemann A (2011) The influence of the support modification over Ni-based catalysts for dry reforming of methane reaction. Catal Today 176:267–271

    CAS  Article  Google Scholar 

  21. 21.

    Barroso-Quiroga MM, Castro-Luna AE (2010) Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane. Int J Hydrog Energy 35:6052–6056

    CAS  Article  Google Scholar 

  22. 22.

    Serrano-Lotina A, Daza L (2014) Long-term stability test of Ni-based catalyst in carbon dioxide reforming of methane. Appl Catal A 474:107–113

    CAS  Article  Google Scholar 

  23. 23.

    Garcia-Vargas JM, Valverde JL, Dorado F, Sanchez P (2014) Influence of the support on the catalytic behaviour of Ni catalysts for the dry reforming reaction and the tri-reforming process. J Mol Catal A 395:108–116

    CAS  Article  Google Scholar 

  24. 24.

    Brus G, Komatsu Y, Kimijima S, Szmyd JS (2012) An analysis of biogas reforming process on Ni/YSZ and Ni/SDC catalysts. Int J Thermodyn 15:43–51

    CAS  Google Scholar 

  25. 25.

    Goula MA, Charisiou ND, Papageridis KN, Delimitis A, Pachatouridou E, Iliopoulou EF (2015) Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction: influence of the synthesis method. Int J Hydrog Energy 40:9183–9200

    CAS  Article  Google Scholar 

  26. 26.

    Hou Z, Chen P, Fang H, Zheng X, Yashima T (2006) Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts. Int J Hydrog Energy 31:555–561

    CAS  Article  Google Scholar 

  27. 27.

    Rezaei M, Alavi SM, Sahebdelfar S, Yan ZF (2006) Syngas production by methane reforming with carbon dioxide on noble metal catalysts. J Nat Gas Chem 15:327–334

    CAS  Article  Google Scholar 

  28. 28.

    Ferencz Z, Baán K, Oszkó A, Kónya Z, Kecskés T, Erdohelyi A (2014) Dry reforming of CH4 on Rh doped Co/Al2O3 catalysts. Catal Today 228:123–130

    CAS  Article  Google Scholar 

  29. 29.

    Fernández C, Miranda N, García X, Eloy P, Ruiz P, Gordon A, Jiménez R (2014) Insights into dynamic surface processes occurring in Rh supported on Zr-grafted γ-Al2O3 during dry reforming of methane. Appl Catal B 156–157:202–212

    Article  Google Scholar 

  30. 30.

    Sarusi I, Fodor K, Baán K, Oszkó A, Pótári G, Erdőhelyi A (2011) CO2 reforming of CH4 on doped Rh/Al2O3 catalysts. Catal Today 171:132–139

    CAS  Article  Google Scholar 

  31. 31.

    Derk A, Moore G, Sharma S, McFarland E, Metiu H (2014) Catalytic dry reforming of methane on ruthenium-doped ceria and ruthenium supported on ceria. Top Catal 57:118–124

    CAS  Article  Google Scholar 

  32. 32.

    Kehres J, Jakobsen JG, Andreasen JW, Wagner JB, Liu H, Molenbroek A, Sehested J, Chorkendorff I, Vegge T (2012) Dynamical properties of a Ru/MgAl2O4 catalyst during reduction and dry methane reforming. J Phys Chem C 116:21407–21415

    CAS  Article  Google Scholar 

  33. 33.

    Erdöhelyi A, Cserényi J, Papp E, Solymosi F (1994) Catalytic reaction of methane with carbon dioxide over supported palladium. Appl Catal A 108:205–219

    Article  Google Scholar 

  34. 34.

    Wisniewski M, Boréave A, Gélin P (2005) Catalytic CO2 reforming of methane over Ir/Ce0.9Gd0.1O2−x . Catal Commun 6:596–600

    CAS  Article  Google Scholar 

  35. 35.

    Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF (1991) Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 352:225–226

    CAS  Article  Google Scholar 

  36. 36.

    Rostrup-Nielsen JR, Hansen JH (1993) CO2-reforming of methane over transition metals. J Catal 144:38–49

    CAS  Article  Google Scholar 

  37. 37.

    Vernon PDF, Green MLH, Cheetham AK, Ashcroft AT (1992) Partial oxidation of methane to synthesis gas, and carbon dioxide as an oxidising agent for methane conversion. Catal Today 13:417–426

    CAS  Article  Google Scholar 

  38. 38.

    Nematollahi B, Rezaei M, Khajenoori M (2011) Combined dry reforming and partial oxidation of methane to synthesis gas on noble metal catalysts. Int J Hydrog Energy 36:2969–2978

    CAS  Article  Google Scholar 

  39. 39.

    Mark MF, Maier WF (1996) CO2-reforming of methane on supported Rh and Ir catalysts. J Catal 164:122–130

    CAS  Article  Google Scholar 

  40. 40.

    Toyir J, Gelin P, Belatel H, Kaddouri A (2010) Ir/Ce0.9Gd0.1O2−x  as a new potential anode component in solid oxide fuel cells integrating the concept of gradual internal reforming of methane. Catal Today 157:451–455

    CAS  Article  Google Scholar 

  41. 41.

    Postole G, Nguyen TS, Aouine M, Gelin P, Cardenas L, Piccolo L (2015) Efficient hydrogen production from methane over iridium-doped ceria catalysts synthesized by solution combustion. Appl Catal B 166–167:580–591

    Article  Google Scholar 

  42. 42.

    Khoshtinat Nikoo M, Amin NAS (2011) Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Proc Techn 92:678–691

    Article  Google Scholar 

  43. 43.

    Pliangos C, Yentekakis IV, Papadakis VG, Vayenas CG, Verykios XE (1997) Support-induced promotional effects on the activity of automotive exhaust catalysts: 1. The case of oxidation of light hydrocarbons (C2H4). Appl Catal B 14:161–173

    CAS  Article  Google Scholar 

  44. 44.

    Matsuka V, Konsolakis M, Lambert RM, Yentekakis IV (2008) In situ DRIFTS study of the effect of structure (CeO2–La2O3) and surface (Na) modifiers on the catalytic and surface behaviour of Pt/γ-Al2O3 catalyst under simulated exhaust conditions. Appl Catal B 84:715–722

    Article  Google Scholar 

  45. 45.

    Vayenas CG (2011) Bridging electrochemistry and heterogeneous catalysis. J Solid State Electrochem 15:1425–1435

    CAS  Article  Google Scholar 

  46. 46.

    Nikole J, Tsiplakides D, Pliangos C, Verykios XE, Comninellis Ch, Vayenas CG (2001) Electrochemical promotion and metal-support interactions. J Catal 204:23–34

    Article  Google Scholar 

  47. 47.

    Vayenas CG, Brosda S, Pliangos C (2003) The double-layer approach to promotion, electrocatalysis, electrochemical promotion, and metal–support interactions. J Catal 216:487–504

    CAS  Article  Google Scholar 

  48. 48.

    Vernoux P, Lizarraga L, Tsampas MN, Sapountzi FM, De Lucas-Consuegra A, Valverde J-L, Souentie S, Vayenas CG, Tsiplakides D, Balomenou S, Baranova EA (2013) Ionically conducting ceramics as active catalyst supports. Chem Rev 113:8192–8260

    CAS  Article  Google Scholar 

  49. 49.

    Vayenas CG, Bebelis S, Yentekakis IV, Linzt H-G (1992) Non-faradaic electrochemical modification of catalytic activity: a status report. Catal Today 11:303–438

    CAS  Article  Google Scholar 

  50. 50.

    Tsiakaras P, Vayenas CG (1993) Non-faradaic electrochemical modification of catalytic activity: VII. The case of methane oxidation on platinum. J Catal 140:53–70

    CAS  Article  Google Scholar 

  51. 51.

    Tsiakaras P, Vayenas CG (1993) Oxidative coupling of CH4 on Ag catalyst-electrodes deposited on ZrO2 (8 mol% Y2O3). J Catal 144:333–347

    CAS  Article  Google Scholar 

  52. 52.

    Carnevillier C, Epron F, Marecot P (2004) Controlled preparation and characterization of plurimetallic Pt–Sn and Pt–Ir–Sn/Al2O3 reforming catalysts. Appl Catal A 275:25–33

    CAS  Article  Google Scholar 

  53. 53.

    Vicerich MA, Benitez VM, Especel C, Epron F, Pieck CL (2013) Influence of iridium content on the behavior of Pt–Ir/Al2O3 and Pt–Ir/TiO2 catalysts for selective ring opening of naphthenes. Appl Catal A 453:167–174

    CAS  Article  Google Scholar 

  54. 54.

    Vicerich MA, Oportus M, Benitez VM, Reyes P, Pieck CL (2014) Influence of Na content on the catalytic properties of Pt–Ir/Al2O3 catalysts for selective ring opening of decalin. Appl Catal A 480:42–49

    CAS  Article  Google Scholar 

  55. 55.

    Hong X, Li B, Wang Y, Lu J, Hu G, Luo M (2013) Stable Ir/SiO2 catalyst for selective hydrogenation of crotonaldehyde. Appl Surf Sci 270:388–394

    CAS  Article  Google Scholar 

  56. 56.

    Wögerbauer C, Maciejewski M, Baiker A (2001) Reduction of nitrogen oxides over unsupported iridium: effect of reducing agent. Appl Catal B 34:11–27

    Article  Google Scholar 

  57. 57.

    Hwang C-P, Yeh C-T (1996) Platinum-oxide species formed by oxidation of platinum crystallites supported on alumina. J Mol Catal A 112:295–302

    CAS  Article  Google Scholar 

  58. 58.

    Zhao B, Ran R, Cao Y, Wu X, Weng D, Fan J, Wu X (2014) Insight into the effects of different ageing protocols on Rh/Al2O3 catalyst. Appl Surf Sci 308:230–236

    CAS  Article  Google Scholar 

  59. 59.

    Andonova S, De Ávila CN, Arishtirova K, Bueno JMC, Damyanova S (2011) Structure and redox properties of Co promoted Ni/Al2O3 catalysts for oxidative steam reforming of ethanol. Appl Catal 105:346–360

    CAS  Article  Google Scholar 

  60. 60.

    Wögerbauer C, Maciejewski M, Baiker A, Göbel U (2001) Structural properties and catalytic behaviour of Iridium black in the selective reduction of NO by hydrocarbons. J Catal 201:113–127

    Article  Google Scholar 

  61. 61.

    Zhang B, Cai W, Li Y, Xu Y, Shen W (2008) Hydrogen production by steam reforming of ethanol over an Ir/CeO2 catalyst: reaction mechanism and stability of the catalyst. Int J Hydrog Energy 33:4377–4386

    CAS  Article  Google Scholar 

  62. 62.

    Durgasri DN, Vinodkumar T, Lin F, Alxneit I, Reddy BM (2014) Gadolinium doped cerium oxide for soot oxidation: influence of interfacial metal–support interactions. Appl Surf Sci 314:592–598

    CAS  Article  Google Scholar 

  63. 63.

    Campos C, Torres C, Oportus M, Peña MA, Fierro JLG, Reyes P (2013) Hydrogenation of substituted aromatic nitrobenzenes over 1 % 1.0 wt% Ir/ZrO2 catalyst: effect of meta position and catalytic performance. Catal Today 213:93–100

    CAS  Article  Google Scholar 

  64. 64.

    Hou T, Lei Y, Zhang S, Zhang J, Cai W (2015) Ethanol dry reforming for syngas production over Ir/CeO2 catalyst. J Rare Earths 33:42–45

    CAS  Article  Google Scholar 

  65. 65.

    Ilieva L, Pantaleo G, Ivanov I, Nedyalkova R, Venezia AM, Andreeva D (2008) NO reduction by CO over gold based on ceria, doped by rare earth metals. Catal Today 139:168–173

    CAS  Article  Google Scholar 

  66. 66.

    Siang J-Y, Lee C-C, Wang C-H, Wang W-T, Deng C-Y, Yeh C-T, Wang C-B (2010) Hydrogen production from steam reforming of ethanol using a ceria-supported iridium catalyst: effect of different ceria supports. Int J Hydrog Energy 35:3456–3462

    CAS  Article  Google Scholar 

  67. 67.

    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) Comparative isotope-aided investigation of electrochemical promotion and metal–support interactions 1. 18O2 TPD of electropromoted Pt films deposited on YSZ and of dispersed Pt/YSZ catalysts. J Catal 222:192–206

    CAS  Article  Google Scholar 

  68. 68.

    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) Comparative isotope-aided investigation of electrochemical promotion and metal–support interactions 2. CO oxidation by 18O2 on electropromoted Pt films deposited on YSZ and on nanodispersed Pt/YSZ catalysts. J Catal 226:197–209

    CAS  Article  Google Scholar 

Download references


I. V. Yentekakis and G. Goula are grateful for partial support through the Research Project “Contract No. 3NEW_B_2012” co-financed by the European Union (European Regional Development Fund—ERDF) and Greek national funds through the Operational Program “Competitiveness and Entrepreneurship” of the National Strategic Reference Framework (NSRF)—National Action “Support of New Enterprises & SMEs”.

Author information



Corresponding author

Correspondence to I. V. Yentekakis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yentekakis, I.V., Goula, G., Panagiotopoulou, P. et al. Dry Reforming of Methane: Catalytic Performance and Stability of Ir Catalysts Supported on γ-Al2O3, Zr0.92Y0.08O2−δ (YSZ) or Ce0.9Gd0.1O2−δ (GDC) Supports. Top Catal 58, 1228–1241 (2015). https://doi.org/10.1007/s11244-015-0490-x

Download citation


  • Dry reforming of methane
  • Yttria stabilized zirconia
  • Gadolinia doped ceria
  • Iridium
  • Catalyst stability