Topics in Catalysis

, Volume 58, Issue 18–20, pp 1181–1192 | Cite as

On the Effect of Cu on the Activity of Carbon Supported Ni Nanoparticles for Hydrogen Electrode Reactions in Alkaline Medium

  • Alexandr G. Oshchepkov
  • Pavel A. Simonov
  • Olga V. Cherstiouk
  • Renat R. Nazmutdinov
  • Dmitrii V. Glukhov
  • Vladimir I. Zaikovskii
  • Tatyana Yu. Kardash
  • Ren I. Kvon
  • Antoine Bonnefont
  • Alexandr N. Simonov
  • Valentin N. Parmon
  • Elena R. Savinova
Original Paper


Effects of adding varied amounts of copper to carbon-supported nickel particles on their structure, composition and electrocatalytic activity for the hydrogen oxidation and evolution reactions in alkaline medium have been explored. Ni1-x Cu x /C catalysts were prepared by the incipient wetness impregnation. Comprehensive characterization of the catalysts included X-ray powder diffraction, X-ray photoelectron spectroscopic, transmission electron microscopic and cyclic voltammetric analyses, while atomistic Monte Carlo simulations have been undertaken to obtain further insights into the structure of the bimetallic NiCu nanoparticles. We found that compared to monometallic Ni, NiCu nanoparticles show lower propensity towards oxidation under ambient conditions. Furthermore, we report that adding Cu allows increasing the surface-weighted electrocatalytic activity, and the specific surface area of Ni1-x Cu x /C electrodes, both contributing to a ca four-fold enhancement of the mass-weighted activity. The nature of the synergistic interactions between Ni and Cu is proposed on the basis of the analysis of experimental data and Monte Carlo structural modelling results.


Hydrogen oxidation and evolution reactions Alkaline solutions Nickel Copper Carbon support Monte Carlo simulations 



The authors acknowledge financial support from the grant ERA.Net RUS No. 208 and Russian Academy of Science (Project No. V.46.4.4). Clarifying discussions with Prof Wolfgang Schmickler and Prof. Elizabeth Santos (Ulm University, Germany) are highly appreciated. A.G.O. acknowledges financial support from Russian UMNIK Program No. 10U/01-13 and PhD Eiffel scholarship of French government. T.Y.K acknowledges financial support from the Skolkovo Foundation (Grant Agreement for Russian educational organizations No. 3 of 25.12.2014). R.R.N and D.V.G. thank the Russian Foundation for Basic Research (Project No. 14-03-00935a).

Supplementary material

11244_2015_487_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1693 kb)


  1. 1.
    Wang Y-J, Qiao J, Baker R, Zhang J (2013) Alkaline polymer electrolyte membranes for fuel cell applications. Chem Soc Rev 42:5768–5787CrossRefGoogle Scholar
  2. 2.
    Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA, Kucernak AR, Mustain WE, Nijmeijer K, Scott K, Xu T, Zhuang L (2014) Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci 7:3135–3191CrossRefGoogle Scholar
  3. 3.
    Durst J, Siebel A, Simon C, Hasché F, Herranz J, Gasteiger HA (2014) New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci 7:2255–2260CrossRefGoogle Scholar
  4. 4.
    Sheng W, Myint M, Chen JG, Yan Y (2013) Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ Sci 6:1509–1512CrossRefGoogle Scholar
  5. 5.
    Marini S, Salvi P, Nelli P, Pesenti R, Villa M, Kiros Y (2013) Stable and inexpensive electrodes for the hydrogen evolution reaction. Int J Hydrog Energy 38:11484–11495CrossRefGoogle Scholar
  6. 6.
    Solmaz R, Döner A, Kardaş G (2008) Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction. Electrochem Commun 10:1909–1911CrossRefGoogle Scholar
  7. 7.
    Ngamlerdpokin K, Tantavichet N (2014) Electrodeposition of nickel–copper alloys to use as a cathode for hydrogen evolution in an alkaline media. Int J Hydrog Energy 39:2505–2515CrossRefGoogle Scholar
  8. 8.
    Ahn SH, Park HH-Y, Choi I, Yoo SJ, Hwang SJ, Kim H-J, Cho EA, Yoon CW, Son H, Hernandez JM, Nam SW, Lim T-H, Kim S-K, Jang JH (2013) Electrochemically fabricated NiCu alloy catalysts for hydrogen production in alkaline water electrolysis. Int J Hydrog Energy 38:13493–13501CrossRefGoogle Scholar
  9. 9.
    Sheng W, Bivens AP, Myint M, Zhuang Z, Forest RV, Fang Q, Chen JG, Yan Y (2014) Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy Environ Sci 7:1719–1724CrossRefGoogle Scholar
  10. 10.
    Kiros Y, Majari M, Nissinen TA (2003) Effect and characterization of dopants to Raney nickel for hydrogen oxidation. J Alloy Compd 360:279–285CrossRefGoogle Scholar
  11. 11.
    Conway BE, Bockris JO (1957) Electrolytic Hydrogen Evolution Kinetics and Its Relation to the Electronic and Adsorptive Properties of the Metal. J Chem Phys 26:532–541CrossRefGoogle Scholar
  12. 12.
    Trasatti S (1972) Work function, electronegativity, and electrochemical behaviour of metals iii. Electrolytic hydrogen evolution in acid solutions. J Electroanal Chem 39:163–184CrossRefGoogle Scholar
  13. 13.
    Parsons R (1958) The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc 54:1053–1063CrossRefGoogle Scholar
  14. 14.
    Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913CrossRefGoogle Scholar
  15. 15.
    Petrii OA, Tsirlina GA (1994) Electrocatalytic activity prediction for hydrogen electrode reaction: intuition, art, science. Electrochim Acta 39:1739–1747CrossRefGoogle Scholar
  16. 16.
    Quaino P, Juarez F, Santos E, Schmickler W (2014) Volcano plots in hydrogen electrocatalysis—uses and abuses. Beilstein J Nanotechnol 5:846–854CrossRefGoogle Scholar
  17. 17.
    Santos E, Hindelang P, Quaino P, Schulz EN, Soldano G, Schmickler W (2011) Hydrogen electrocatalysis on single crystals and on nanostructured electrodes. ChemPhysChem 12:2274–2279CrossRefGoogle Scholar
  18. 18.
    Santos E, Quaino P, Hindelang PF, Schmickler W (2010) Hydrogen evolution on a pseudomorphic Cu-layer on Ni(111)—A theoretical study. J Electroanal Chem 649:149–152CrossRefGoogle Scholar
  19. 19.
    Watanabe K, Hashiba M, Yamashina T (1976) A quantitative analysis of surface segregation and in-depth profile of copper-nickel alloys. Surf Sci 61:483–490CrossRefGoogle Scholar
  20. 20.
    Ling DT, Miller JN, Lindau I, Spicer WE, Stefan PM (1978) Oscillations in the compositional depth profile of Cu/Ni alloys: a study by UPS. Surf Sci 74:612–620CrossRefGoogle Scholar
  21. 21.
    Brongersma HH, Buck TM (1975) Selected topics in low-energy ion scattering: surface segregation in Cu/Ni alloys and ion neutralization. Surf Sci 53:649–658CrossRefGoogle Scholar
  22. 22.
    Tsong TT, Ng YS, McLane SB (1980) Surface segregation of Ni-Cu alloy in nitrogen and oxygen: an atom-probe field-ion microscope study. J Appl Phys 51:6189–6191CrossRefGoogle Scholar
  23. 23.
    Sakurai T, Hashizume T, Kobayashi A, Sakai A, Hyodo S, Kuk Y, Pickering HW (1986) Surface segregation of Ni-Cu binary alloys studied by an atom-probe. Phys Rev B 34:8379–8390CrossRefGoogle Scholar
  24. 24.
    Donnelly RG, King TS (1978) Surface composition and surface cluster size distribution of Cu-Ni alloys via a monte carlo method. Surf Sci 74:89–108CrossRefGoogle Scholar
  25. 25.
    Foiles SM (1985) Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method. Phys Rev B 32:7685–7693CrossRefGoogle Scholar
  26. 26.
    Yan XL, Wang JY (2013) Size effects on surface segregation in Ni–Cu alloy thin films. Thin Solid Films 529:483–487CrossRefGoogle Scholar
  27. 27.
    Xie Y-P, Zhao S-J (2011) The energetic and structural properties of bcc NiCu, FeCu alloys: a first-principles study. Comput Mater Sci 50:2586–2591CrossRefGoogle Scholar
  28. 28.
    Wang HY, Najafabadi R, Srolovitz DJ, LeSar R (1992) (100) surface segregation in Cu-Ni alloys. Phys Rev B 45:12028–12042CrossRefGoogle Scholar
  29. 29.
    Huang S, Balbuena PB (2002) Melting of bimetallic Cu–Ni nanoclusters. J Phys Chem B 106:7225–7236CrossRefGoogle Scholar
  30. 30.
    Mainardi DS, Balbuena PB (2001) Monte Carlo simulation of Cu–Ni nanoclusters: surface segregation studies. Langmuir 17:2047–2050CrossRefGoogle Scholar
  31. 31.
    Oshchepkov AG, Simonov AN, Simonov PA, Shmakov AN, Rudina NA, Ishchenko AV, Cherstiouk OV, Parmon VN (2014) Interrelation between catalytic activity for oxygen electroreduction and structure of supported platinum. J Electroanal Chem 729:34–42CrossRefGoogle Scholar
  32. 32.
    Machado SAS, Avaca LA (1994) The hydrogen evolution reaction on nickel surfaces stabilized by H-absorption. Electrochim Acta 39:1385–1391CrossRefGoogle Scholar
  33. 33.
    Sarkany J (1982) On the use of the dynamic pulse method to measure metal surface areas. J Catal 76:75–83CrossRefGoogle Scholar
  34. 34.
    UK Surface Analysis Forum.
  35. 35.
    Hall DS, Bock C, MacDougall BR (2013) The Electrochemistry of Metallic Nickel: oxides, Hydroxides, Hydrides and Alkaline Hydrogen Evolution. J Electrochem Soc 160:F235–F243CrossRefGoogle Scholar
  36. 36.
    Medway SL, Lucas CA, Kowal A, Nichols RJ, Johnson D (2006) In situ studies of the oxidation of nickel electrodes in alkaline solution. J Electroanal Chem 587:172–181CrossRefGoogle Scholar
  37. 37.
    Domnick R, Held G, Witte P, Steinrück H-P (2001) The transition from oxygen chemisorption to oxidation of ultra-thin Ni layers on Cu(111). J Chem Phys 115:1902–1908CrossRefGoogle Scholar
  38. 38.
    Holloway PH (1981) Chemisorption and oxide formation on metals: oxygen–nickel reaction. J Vac Sci Technol 18:653–659CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Alexandr G. Oshchepkov
    • 1
    • 2
    • 3
  • Pavel A. Simonov
    • 1
    • 4
  • Olga V. Cherstiouk
    • 1
    • 4
  • Renat R. Nazmutdinov
    • 6
  • Dmitrii V. Glukhov
    • 6
  • Vladimir I. Zaikovskii
    • 1
    • 4
  • Tatyana Yu. Kardash
    • 1
    • 5
  • Ren I. Kvon
    • 1
  • Antoine Bonnefont
    • 3
  • Alexandr N. Simonov
    • 7
  • Valentin N. Parmon
    • 1
    • 4
  • Elena R. Savinova
    • 2
  1. 1.Boreskov Institute of CatalysisNovosibirskRussia
  2. 2.Institut de Chimie et Procédés pour l’Energie, l’Environnement et la SantéUMR 7515 CNRS-University of StrasbourgStrasbourg CedexFrance
  3. 3.Institut de Chimie de StrasbourgUMR 7177 CNRS-University of StrasbourgStrasbourgFrance
  4. 4.Novosibirsk State UniversityNovosibirskRussia
  5. 5.Research and Educational Center for Energy Efficient CatalysisNovosibirsk State UniversityNovosibirskRussia
  6. 6.Kazan National Research Technological UniversityKazanRussia
  7. 7.School of ChemistryMonash UniversityClaytonAustralia

Personalised recommendations