Skip to main content
Log in

Sulfur Tolerance of Au–Mο–Ni/GDC SOFC Anodes Under Various CH4 Internal Steam Reforming Conditions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The present work refers to the short communication of a first series of results on how Au and/or Mo addition can affect the stability of modified Ni/GDC anodes for the reaction of internal CH4 steam reforming, in the presence of H2S. Specifically, it is shown that Ni/GDC is stable in the presence of 10 ppm H2S, but only in the case where 100 vol% of H2 is the anode feed. In the case where CH4 and H2O (diluted in helium carrier gas) comprise the anode feed, then at ratios equal to S/C = 2 or S/C = 0.13 the performance of Ni/GDC shows severe degradation, while the Au–Mo–Ni/GDC anode has the best and most stable electrocatalytic behavior. Finally, there is a first attempt to investigate the effect of the electrocatalyst’s loading on sulfur tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Escudero MJ, Irvine JTS, Daza L (2009) Development of anode material based on La-substituted SrTiO3 perovskites doped with manganese and/or gallium for SOFC. J Power Sources 192(1):43–50. doi:10.1016/j.jpowsour.2008.11.132

    Article  CAS  Google Scholar 

  2. Singh A, Hill JM (2012) Carbon tolerance, electrochemical performance and stability of solid oxide fuel cells with Ni/yttria stabilized zirconia anodes impregnated with Sn and operated with methane. J Power Sources 214:185–194. doi:10.1016/j.jpowsour.2012.04.062

    Article  CAS  Google Scholar 

  3. Peters R, Riensche E, Cremer P (2000) Pre-reforming of natural gas in solid oxide fuel-cell systems. J Power Sources 86(1–2):432–441. doi:10.1016/s0378-7753(99)00440-1

    Article  CAS  Google Scholar 

  4. Mogensen D, Grunwaldt JD, Hendriksen PV, Dam-Johansen K, Nielsen JU (2011) Internal steam reforming in solid oxide fuel cells: status and opportunities of kinetic studies and their impact on modelling. J Power Sources 196(1):25–38. doi:10.1016/j.jpowsour.2010.06.091

    Article  CAS  Google Scholar 

  5. Sasaki K, Haga K, Yoshizumi T, Minematsu D, Yuki E, Liu R, Uryu C, Oshima T, Ogura T, Shiratori Y, Ito K, Koyama M, Yokomoto K (2011) Chemical durability of solid oxide fuel cells: influence of impurities on long-term performance. J Power Sources 196(22):9130–9140

    Article  CAS  Google Scholar 

  6. Appleby AJ, Foulkes FR (2004) Fuel cell handbook, 7th edn. EG&G Technical Services, Inc., Morgantown

    Google Scholar 

  7. Niakolas DK (2014) Sulfur poisoning of Ni-based anodes for solid oxide fuel cells in H/C-based fuels. Appl Catal A 486:123–142. doi:10.1016/j.apcata.2014.08.015

    Article  CAS  Google Scholar 

  8. Hagen A (2013) Sulfur poisoning of the water gas shift reaction on anode supported solid oxide fuel cells. J Electrochem Soc 160(2):F111–F118. doi:10.1149/2.060302jes

    Article  CAS  Google Scholar 

  9. Prasad DH, Ji HI, Kim HR, Son JW, Kim BK, Lee HW, Lee JH (2011) Effect of nickel nano-particle sintering on methane reforming activity of Ni-CGO cermet anodes for internal steam reforming SOFCs. Appl Catal B 101(3–4):531–539

    Article  CAS  Google Scholar 

  10. Chen T, Wang WG, Miao H, Li T, Xu C (2011) Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas. J Power Sources 196(5):2461–2468

    Article  CAS  Google Scholar 

  11. Chun CM, Bhargava G, Ramanarayanan TA (2007) Metal dusting corrosion of nickel-based alloys. J Electrochem Soc 154(5):C231–C240. doi:10.1149/1.2710215

    Article  CAS  Google Scholar 

  12. Faes A, Hessler-Wyser A, Presvytes D, Vayenas CG, Van herle J (2009) Nickel-zirconia anode degradation and triple phase boundary quantification from microstructural analysis. Fuel Cells 9(6):841–851. doi:10.1002/fuce.200800147

    Article  CAS  Google Scholar 

  13. Lussier A, Sofie S, Dvorak J, Idzerda YU (2008) Mechanism for SOFC anode degradation from hydrogen sulfide exposure. Int J Hydrog Energy 33(14):3945–3951. doi:10.1016/j.ijhydene.2007.11.033

    Article  CAS  Google Scholar 

  14. Halinen M, Saarinen J, Noponen M, Vinke IC, Kiviaho J (2010) Experimental analysis on performance and durability of SOFC demonstration unit. Fuel Cells 10(3):440–452. doi:10.1002/fuce.200900152

    Article  CAS  Google Scholar 

  15. Brightman E, Ivey DG, Brett DJL, Brandon NP (2011) The effect of current density on H2S-poisoning of nickel-based solid oxide fuel cell anodes. J Power Sources 196(17):7182–7187. doi:10.1016/j.jpowsour.2010.09.089

    Article  CAS  Google Scholar 

  16. Weber A, Dierickx S, Kromp A, Ivers-Tiffée E (2013) Sulfur poisoning of anode-supported SOFCs under reformate operation. Fuel Cells 13(4):487–493. doi:10.1002/fuce.201200180

    Article  CAS  Google Scholar 

  17. Gong M, Liu X, Trembly J, Johnson C (2007) Sulfur-tolerant anode materials for solid oxide fuel cell application. J Power Sources 168(2):289–298. doi:10.1016/j.jpowsour.2007.03.026

    Article  CAS  Google Scholar 

  18. Atkinson A, Barnett S, Gorte RJ, Irvine JTS, McEvoy AJ, Mogensen M, Singhal SC, Vohs J (2004) Advanced anodes for high-temperature fuel cells. Nat Mater 3(1):17–27. doi:10.1038/nmat1040

    Article  CAS  Google Scholar 

  19. Trembly JP, Bayless DJ, Gemmen RS (2006) In: Symposium of international Pittsburgh coal conference

  20. Sun C, Stimming U (2007) Recent anode advances in solid oxide fuel cells. J Power Sources 171(2):247–260. doi:10.1016/j.jpowsour.2007.06.086

    Article  CAS  Google Scholar 

  21. Cheng Z, Wang J-H, Choi Y, Yang L, Lin MC, Liu M (2011) From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy Environ Sci 4(11):4380–4409. doi:10.1039/c1ee01758f

    Article  CAS  Google Scholar 

  22. Wang W, Su C, Wu Y, Ran R, Shao Z (2013) Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem Rev 113(10):8104–8151. doi:10.1021/cr300491e

    Article  CAS  Google Scholar 

  23. Dong J, Cheng Z, Zha S, Liu M (2006) Identification of nickel sulfides on Ni–YSZ cermet exposed to H2 fuel containing H2S using Raman spectroscopy. J Power Sources 156(2):461–465. doi:10.1016/j.jpowsour.2005.06.016

    Article  CAS  Google Scholar 

  24. Zhang L, Jiang SP, He HQ, Chen X, Ma J, Song XC (2010) A comparative study of H2S poisoning on electrode behavior of Ni/YSZ and Ni/GDC anodes of solid oxide fuel cells. Int J Hydrog Energy 35(22):12359–12368

    Article  CAS  Google Scholar 

  25. Niakolas DK, Athanasiou M, Dracopoulos V, Tsiaoussis I, Bebelis S, Neophytides SG (2013) Study of the synergistic interaction between nickel, gold and molybdenum in novel modified NiO/GDC cermets, possible anode materials for CH4 fueled SOFCs. Appl Catal A 456:223–232. doi:10.1016/j.apcata.2013.02.024

    Article  CAS  Google Scholar 

  26. Niakolas DK, Athanasiou M, Neophytides SG, Bebelis S (2011) Characterization and carbon tolerance of new Au–Mo–Ni/GDC cermet powders for use as anode materials in methane fuelled SOFCs. ECS Trans 35(1):1329–1336

    Article  CAS  Google Scholar 

  27. Niakolas DK, Ouweltjes JP, Rietveld G, Dracopoulos V, Neophytides SG (2010) Au-doped Ni/GDC as a new anode for SOFCs operating under rich CH4 internal steam reforming. Int J Hydrog Energy 35(15):7898–7904

    Article  CAS  Google Scholar 

  28. Sasaki K, Susuki K, Iyoshi A, Uchimura M, Imamura N, Kusaba H, Teraoka Y, Fuchino H, Tsujimoto K, Uchida Y, Jingo N (2006) H2S poisoning of solid oxide fuel cells. J Electrochem Soc 153(11):A2023–A2029. doi:10.1149/1.2336075

    Article  CAS  Google Scholar 

  29. Matsuzaki Y, Yasuda I (2000) The poisoning effect of sulfur-containing impurity gas on a SOFC anode: part I. Dependence on temperature, time, and impurity concentration. Solid State Ion 132(3–4):261–269. doi:10.1016/s0167-2738(00)00653-6

    Article  CAS  Google Scholar 

  30. Li TS, Wang WG, Chen T, Miao H, Xu C (2010) Hydrogen sulfide poisoning in solid oxide fuel cells under accelerated testing conditions. J Power Sources 195(20):7025–7032. doi:10.1016/j.jpowsour.2010.05.009

    Article  CAS  Google Scholar 

  31. Cheng Z, Zha S, Liu M (2007) Influence of cell voltage and current on sulfur poisoning behavior of solid oxide fuel cells. J Power Sources 172(2):688–693. doi:10.1016/j.jpowsour.2007.07.052

    Article  CAS  Google Scholar 

  32. Cheng Z, Zha SW, Aguilar L, Wang D, Winnick J, Liu ML (2006) A solid oxide fuel cell running on H2S/CH4 fuel mixtures. Electrochem Solid State Lett 9(1):A31–A33. doi:10.1149/1.2137467

    Article  CAS  Google Scholar 

  33. Cheng Z, Liu M (2007) Characterization of sulfur poisoning of Ni–YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy. Solid State Ion 178(13–14):925–935. doi:10.1016/j.ssi.2007.04.004

    Article  CAS  Google Scholar 

  34. Luo T, Vohs JM, Gorte RJ (2002) An examination of sulfur poisoning on Pd/Ceria catalysts. J Catal 210(2):397–404. doi:10.1006/jcat.2002.3689

    Article  CAS  Google Scholar 

  35. Rostrup-Nielsen JR, Sehested J, Nørskov JK (2002) Hydrogen and synthesis gas by steam- and CO2 reforming. Advances in catalysis, vol 47. Academic Press, New York, pp 65–139. doi:10.1016/S0360-0564(02)47006-X

    Google Scholar 

  36. Rasmussen JFB, Hagen A (2009) The effect of H2S on the performance of Ni-YSZ anodes in solid oxide fuel cells. J Power Sources 191(2):534–541. doi:10.1016/j.jpowsour.2009.02.001

    Article  CAS  Google Scholar 

  37. Abild-Pedersen F, Lytken O, Engbæk J, Nielsen G, Chorkendorff I, Nørskov JK (2005) Methane activation on Ni(111): effects of poisons and step defects. Surf Sci 590(2–3):127–137. doi:10.1016/j.susc.2005.05.057

    Article  CAS  Google Scholar 

  38. Haga K, Adachi S, Shiratori Y, Itoh K, Sasaki K (2008) Poisoning of SOFC anodes by various fuel impurities. Solid State Ion 179(27–32):1427–1431. doi:10.1016/j.ssi.2008.02.062

    Article  CAS  Google Scholar 

  39. Hauch A, Hagen A, Hjelm J, Ramos T (2014) Sulfur poisoning of SOFC anodes: effect of overpotential on long-term degradation. J Electrochem Soc 161(6):F734–F743. doi:10.1149/2.080406jes

    Article  CAS  Google Scholar 

  40. Chianelli RR, Berhault G, Torres B (2009) Unsupported transition metal sulfide catalysts: 100 years of science and application. Catal Tod 147(3–4):275–286. doi:10.1016/j.cattod.2008.09.041

    Article  CAS  Google Scholar 

  41. Kibsgaard J, Tuxen A, Knudsen KG, Brorson M, Topsøe H, Lægsgaard E, Lauritsen JV, Besenbacher F (2010) Comparative atomic-scale analysis of promotional effects by late 3d-transition metals in MoS2 hydrotreating catalysts. J Catal 272(2):195–203. doi:10.1016/j.jcat.2010.03.018

    Article  CAS  Google Scholar 

  42. Babich IV, Moulijn JA (2003) Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel 82(6):607–631. doi:10.1016/s0016-2361(02)00324-1

    Article  CAS  Google Scholar 

  43. Papaefthimiou V, Shishkin M, Niakolas DK, Athanasiou M, Law YT, Arrigo R, Teschner D, Hävecker M, Knop-Gericke A, Schlögl R, Ziegler T, Neophytides SG, Zafeiratos S (2013) On the active surface state of nickel-ceria solid oxide fuel cell anodes during methane electrooxidation. Adv Energy Mater 3(6):762–769. doi:10.1002/aenm.201200727

    Article  CAS  Google Scholar 

  44. Souentie S, Athanasiou M, Niakolas DK, Katsaounis A, Neophytides SG, Vayenas CG (2013) Mathematical modeling of Ni/GDC and Au–Ni/GDC SOFC anodes performance under internal methane steam reforming conditions. J Catal 306:116–128. doi:10.1016/j.jcat.2013.06.015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. V. Dracopoulos at FORTH/ICEHT for the SEM images and our reviewers for their useful comments. The research leading to this review was funded by the European Union`s Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under the Projects ROBANODE and T CELL with grand agreement Numbers: 245355 and 298300, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Niakolas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neofytidis, C., Athanasiou, M., Neophytides, S.G. et al. Sulfur Tolerance of Au–Mο–Ni/GDC SOFC Anodes Under Various CH4 Internal Steam Reforming Conditions. Top Catal 58, 1276–1289 (2015). https://doi.org/10.1007/s11244-015-0486-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0486-6

Keywords

Navigation