Skip to main content

On the Interaction of Metal Nanoparticles with Supports

Abstract

Metal nanoparticles supported on surfaces often undergo sintering even at moderate temperatures. The degree of sintering is typically influenced by the surface chemistry indicating that besides the commonly believed Ostwald ripening also other processes associated with metal surface diffusion are responsible for the nanoparticle size growth. In addition to the deterioration in metal dispersion, carbon supports can show chemical instability leading to their partial degradation in the proximity of the nanoparticles both in reducing and oxidizing environments at elevated temperatures. This work reports a study of Pd, Pt and Ni nanoparticles anchored on carbon (activated carbon, graphite and carbon nanotubes) as well as titania (nanoparticles and microparticles) surfaces frequently applied as catalyst materials in heterogeneous catalysis and photocatalysis, and evaluate the potential events causing metal sintering and degradation of the supports using transmission electron microscopy analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Pham-Huua C, Keller N, Ehret G, Charbonniere LJ, Ziessel R, Ledoux MJ (2001) Carbon nanofiber supported palladium catalyst for liquid-phase reactions: an active and selective catalyst for hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. J Mol Cat A 170:155–163

    Article  Google Scholar 

  2. 2.

    Wang Y, Shah N, Huffman GP (2004) Pure hydrogen production by partial dehydrogenation of cyclohexane and methylcyclohexane over nanotube-supported Pt and Pd catalysts. Energy Fuels 18:1429–1433

    CAS  Article  Google Scholar 

  3. 3.

    Seelam PK, Huuhtanen M, Sápi A, Szabó M, Kordás K, Turpeinen E, Tóth G, Keiski RL (2010) CNT-based catalysts for H2 production by ethanol reforming. Int J Hydrogen Energy 35:12588–12595

    CAS  Article  Google Scholar 

  4. 4.

    Yin L, Liebscher J (2007) Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107:133–173

    CAS  Article  Google Scholar 

  5. 5.

    Steigerwalt ES, Deluga GA, Cliffel DE, Lukehart CM (2001) A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst. J Phys Chem B 105:8097–8101

    CAS  Article  Google Scholar 

  6. 6.

    Yang M, Yang Y, Liu Y, Shen G, Yu R (2006) Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens Bioelectron 21:1125–1131

    CAS  Article  Google Scholar 

  7. 7.

    Voorhees PW (1985) The theory of Ostwald ripening. J Stat Phys 38:231–252

    Article  Google Scholar 

  8. 8.

    Moulijn JA, van Diepen AE, Kapteijn F (2001) Catalyst deactivation: is it predictable? What to do? Appl Cat A 212:3–16

    CAS  Article  Google Scholar 

  9. 9.

    Bartholomew CH (2001) Mechanism of catalyst deactivation. Appl Cat A 212:17–60

    CAS  Article  Google Scholar 

  10. 10.

    Leino A-R, Mohl M, Kukkola J, Mäki-Arvela P, Kokkonen T, Shchukarev A, Kordas K (2013) Low-temperature catalytic oxidation of multi-walled carbon nanotubes. Carbon 57:99–107

    CAS  Article  Google Scholar 

  11. 11.

    Yu R, Chen L, Liu Q, Lin J, Tan K-L, Ng SC, Chan HSO, Xu G-Q, Hor TSA (1998) Platinum deposition on carbon nanotubes via chemical modification. Chem Mater 10:718–722

    CAS  Article  Google Scholar 

  12. 12.

    The released reaction enthalpies are calculated form data in Sassani DC, Shock EL (1998) Solubility and transport of platinum-group elements in supercritical fluids: summary and estimates of thermodynamic properties for ruthenium, rhodium, palladium, and platinum solids, aqueous ions, and complexes to 1000 °C and 5 kbar. Geochimi Cosmochim Acta 62:2643–2671

  13. 13.

    McKee DW (1963) Catalytic activity and sintering of platinum black. I. Kinetics of propane cracking. J Phys Chem 67:841–846

    CAS  Article  Google Scholar 

  14. 14.

    Sambles JR, Skinner LM, Lisgarten ND (1970) An electron microscope study of evaporating small particles: the Kelvin equation for liquid lead and mean surface energy of solid silver. Proc R Soc Lond A 318:507–522

    CAS  Article  Google Scholar 

  15. 15.

    Zhang J, Alexandrova AN (2011) Structure, stability and mobility of small Pd clusters on the stoichiometric and defective TiO2 (110) surfaces. J Chem Phys 135:174702

    Article  Google Scholar 

  16. 16.

    Morrow BH, Striolo A (2007) Morphology and diffusion mechanism of platinum nanoparticles on carbon nanotube bundles. J Phys Chem C 111:17905–17913

    CAS  Article  Google Scholar 

  17. 17.

    Chen J, Chan K-Y (2005) Size-dependent mobility of platinum cluster on a graphite surface. Mol Simul 31(5–6):527–533

    CAS  Article  Google Scholar 

  18. 18.

    Habenicht BF, Teng D, Semidey-Flecha L, Sholl DS, Xu Y (2014) Adsorption and diffusion of 4d and 5d transition metal Adatoms on graphene/Ru(0001) and the implications for cluster nucleation. Top Catal 57:69–79

    CAS  Article  Google Scholar 

  19. 19.

    Howitt DG, Chen SJ, Gierhart BC, Smith RL, Collins SD (2008) The electron beam hole drilling of silicon nitride thin films. J Appl Phys 103:024310

    Article  Google Scholar 

  20. 20.

    Ci L, Song L, Jariwala D, Elias AL, Gao W, Terrones M, Ajayan PM (2009) Graphene shape control by multistage cutting and transfer. Adv Mat 21:1–5

    Article  Google Scholar 

  21. 21.

    Xia W, Hagen V, Kundu S, Wang Y, Somsen C, Eggeler G, Sun G, Grundmeier G, Stratmann M, Muhler M (2007) Controlled etching of carbon nanotubes by iron-catalyzed steam gasification. Adv Mat 19:3648–3652

    CAS  Article  Google Scholar 

  22. 22.

    Ci L, Xu Z, Wang L, Gao W, Ding F, Kelly KF, Yakobson BI, Ajayan PM (2008) Controlled nanocutting of graphene. Nano Res 1:116–122

    CAS  Article  Google Scholar 

  23. 23.

    Schäffel F, Warner JH, Bachmatiuk A, Rellinghaus B, Bücher B, Schultz L, Rümmeli MH (2009) On the catalytic hydrogenation of graphite for graphene nanoribbon fabrication. Phys Status Solidi B 246:2540–2544

    Article  Google Scholar 

  24. 24.

    Sapi A (2012) Synthesis, characterization and catalytic properties of carbon nanotube-nanoparticle nanocomposites. Doctoral thesis, University of Szeged

  25. 25.

    Halonen N, Rautio A, Leino A-R, Kyllönen T, Tóth G, Lappalainen J, Kordás K, Huuhtanen M, Keiski RL, Sápi A, Szabó M, Kukovecz Á, Kónya Z, Kiricsi I, Vajtai R, Ajayan PM (2010) Three dimensional carbon nanotube scaffolds as filters or catalyst support membranes. ACS Nano 4:2003–2008

    CAS  Article  Google Scholar 

  26. 26.

    Zhou Y, Muhich CL, Neltner BT, Weimer AW, Musgrave CB (2012) Growth of Pt particles on the anatase TiO2 (101) surface. J Phys Chem C 116:12114–12123

    CAS  Article  Google Scholar 

  27. 27.

    Booth TJ, Pizzocchero F, Andersen H, Hansen TW, Wagner JB, Jinschek JR, Dunin-Borkowski RE, Hansen O, Bøggild P (2011) Discrete dynamics of nanoparticle channelling in suspended graphene. Nano Lett 11:2689–2692

    CAS  Article  Google Scholar 

  28. 28.

    Han J (2004) Kinetic and Morphological Studies of Palladium Oxidation in O2–CH4 Mixtures, Worchester Polytechnic Institute

  29. 29.

    Meyer JC, Eder F, Kurasch S, Skakalova V, Kotakoski J, Park HJ, Roth S, Chuvilin A, Eyhusen S, Benner G, Krasheninnikov AV, Kaiser U (2012) Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys Rev Lett 108:196102

    Article  Google Scholar 

  30. 30.

    Krasheninnikov AV, Banhart F, Li JX, Foster AS, Nieminen RM (2005) Stability of carbon nanotubes under electron irradiation: role of tube diameter and chirality. Phys Rev B 72:125428

    Article  Google Scholar 

  31. 31.

    Delariva AT, Hansen TW, Challa SR, Datye AK (2013) In situ transmission electron microscopy of catalyst sintering. J Catal 308:291–305 (and references therein)

    CAS  Article  Google Scholar 

  32. 32.

    Hansen TW, Delariva AT, Challa SR, Datye AK (2013) Sintering of catalytic nanoparticles: particle migration or ostwald ripening? Acc Chem Res 46:1720–1730

    CAS  Article  Google Scholar 

Download references

Acknowledgments

A. -R. Rautio is grateful for the post-graduate position and for the personal Grants received from Graduate School in Electronics, Telecommunications and Automation (GETA), Emil Aaltonen and Tauno Tönning foundations. This work is also associated with the activities of the Åbo Akademi Process Chemistry Centre. Academy of Finland (project Hyna), the National Agency for Research and Innovation (TEKES), Kempe Foundations and the Bio4Energy program are acknowledged for funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Krisztian Kordas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kordas, K., Rautio, AR., Lorite, G.S. et al. On the Interaction of Metal Nanoparticles with Supports. Top Catal 58, 1127–1135 (2015). https://doi.org/10.1007/s11244-015-0481-y

Download citation

Keywords

  • Carbon nanotubes
  • Titania nanoparticles
  • Catalyst support
  • Catalyst aging
  • Catalyst coarsening