Topics in Catalysis

, Volume 58, Issue 14–17, pp 1002–1011 | Cite as

Activity Enhancement of W–CeZr Oxide Catalysts by SO2 Treatment in NH3-SCR

  • Ari VäliheikkiEmail author
  • Tanja Kolli
  • Mika Huuhtanen
  • Teuvo Maunula
  • Riitta L. Keiski
Original Paper


The impact of sulphur and hydrothermal aging on W–CeZr and CeZr catalysts was investigated. Sulphur treatments for W–CeZr and CeZr were done in the absence and presence of water (S- and S + H2O-treatments, respectively) for 5 h at 400 °C. Similarly, hydrothermal aging (H2O-treatment) for W–CeZr and CeZr catalysts was done in a gas phase. The W and S contents were analyzed using XRF. The studied catalysts were characterized by BET, BJH, DRIFTS, XPS and NH3 desorption methods. In addition, the activity of the catalysts was tested in NH3-SCR reaction. The NOx conversion over the fresh W–CeZr catalyst was 85 % at 350 °C whereas the fresh CeZr was not active in NOx reduction. In the case of W–CeZr and CeZr catalysts, S + H2O and S-treatments increased the NOx conversion up to 92–98 % at the temperature range of 350–400 °C. The increased portion of chemisorbed oxygen due to S- and S + H2O-treatments enhances the NOx reduction reactions. The water treatment had no effect on the NH3-SCR activity which indicates that the S-compounds are the major reason for enhanced activity.


Sulphur dioxide Ceria–zirconia Tungsten Nitrogen oxides NH3-SCR 



The authors acknowledge the financial support from Tekes, the Finnish Funding Agency for Technology and Innovation via the Cleen Ltd’s Future Combustion Engine Power Plant (FCEP) programme and the Academy of Finland (ACABIO Project, 139187). The authors are also grateful to the Center of Microscopy and Nanotechnology (CMNT) institute for providing guidance and experience for XPS experiments.


  1. 1.
    Directive 715/2007/EC of the European Parliament and CouncilGoogle Scholar
  2. 2.
    Smith SJ, van Aardenne J, Klimont Z, Andres RJ, Volke A, Delgado Arias S (2011) Atmos Chem Phys 11:1101–1116CrossRefGoogle Scholar
  3. 3.
    Bowman CT (1991) In: Bartok W, Sarofim AF (eds) Fossil fuel combustion. Wiley, New YorkGoogle Scholar
  4. 4.
    Qi G, Wang Y, Yang RT (2008) Catal Lett 121:111–117CrossRefGoogle Scholar
  5. 5.
    de Oliveira MLM, Silva CM, Moreno-Tost R, Farias TL, Jimenez-Lopez A, Rodriguez-Castellon E (2009) Appl Catal A 366:13–21CrossRefGoogle Scholar
  6. 6.
    de Oliveira MLM, Silva CM, Moreno-Tost R, Farias TL, Jimenez-Lopez A, Rodriguez-Castellon E (2009) Appl Catal B 88:420–429CrossRefGoogle Scholar
  7. 7.
    Huang Z, Zhu Z, Liu Z (2002) Appl Catal B 39:361–368CrossRefGoogle Scholar
  8. 8.
    Bai S, Zhao J, Wang L, Zhu Z (2010) Catal Today 158:393–400CrossRefGoogle Scholar
  9. 9.
    Magnusson M, Fridell E, Ingelsten HH (2012) Appl Catal B 111–112:20–26CrossRefGoogle Scholar
  10. 10.
    Chapman DM (2011) Appl Catal A 392:143–150CrossRefGoogle Scholar
  11. 11.
    Domingo JL (1996) Reprod Toxicol 10:175–182CrossRefGoogle Scholar
  12. 12.
    Bruce G (2011) In: Nriagu JO (ed) Encyclopedia of environmental health. Elsevier, BurlingtonGoogle Scholar
  13. 13.
    Daturi M, Finocchio E, Binet C, Lavalley JC, Fally F, Perrichon V (1999) J Phys Chem B 103:4884–4891CrossRefGoogle Scholar
  14. 14.
    Daturi M, Bion N, Saussey J, Lavalley JC, Hedouin C, Seguelong T, Blanchard G (2001) Phys Chem Chem Phys 3:252–255CrossRefGoogle Scholar
  15. 15.
    Graham GW, Jen HW, McCabe RW, Straccia AM, Haack LP (2000) Catal Lett 67:99–105CrossRefGoogle Scholar
  16. 16.
    Rohart E, Larcher O, Deutsch S, Hedouin C, Aımin H, Fajardie F, Allain M, Macaudiere P (2004) Top Catal 30–31:417–423CrossRefGoogle Scholar
  17. 17.
    Adamowska M, Muller S, Da Costa P, Krzton A, Burg P (2007) Appl Catal B 74:278–289CrossRefGoogle Scholar
  18. 18.
    Chen L, Weng D, Si Z, Wu X (2012) Prog Nat Sci 22:265–272CrossRefGoogle Scholar
  19. 19.
    Daturi M, Finocchio E, Binet C, Lavalley JC, Fally F, Perrichon V, Vidal H, Hickey N, Kaspar J (2000) J Phys Chem B 104:9186–9194CrossRefGoogle Scholar
  20. 20.
    Vidal H, Kaspar J, Pijolat M, Colon G, Bernal S, Cordon A, Perrichon V, Fally F (2000) Appl Catal B 27:49–63CrossRefGoogle Scholar
  21. 21.
    Zhang R, Teoh WY, Amal R, Chen B, Kaliaguine S (2010) J Catal 272:210–219CrossRefGoogle Scholar
  22. 22.
    Wang Z, Qu Z, Quan X, Wang H (2012) Appl Catal A 411–412:131–138CrossRefGoogle Scholar
  23. 23.
    Atribak I, Guillen-Hurtado N, Bueno-Lopez A, Garcia-Garcia A (2010) Appl Surf Sci 256:7706–7712CrossRefGoogle Scholar
  24. 24.
    Guillen-Hurtado N, Atribak I, Bueno-Lopez A, Garcia-Garcia A (2010) J Mol Catal A 323:52–58CrossRefGoogle Scholar
  25. 25.
    Gu T, Liu Y, Weng X, Wang H, Wu Z (2010) Catal Commun 12:310–313CrossRefGoogle Scholar
  26. 26.
    Wang M, Si Z, Chen L, Wu X, Yu J (2013) J Rare Earths 31:1148–1156CrossRefGoogle Scholar
  27. 27.
    Si Z, Weng D, Wu X, Yang J, Wang B (2010) Catal Commun 11:1045–1048CrossRefGoogle Scholar
  28. 28.
    Chang H, Ma L, Yang S, Li J, Chen L, Wang W, Hao J (2013) J Hazard Mater 262:782–788CrossRefGoogle Scholar
  29. 29.
    Li Y, Cheng H, Li D, Qin Y, Xie Y, Wang S (2008) Chem Commun 1470–1472Google Scholar
  30. 30.
    Väliheikki A, Kolli T, Huuhtanen M, Maunula T, Kinnunen T, Keiski RL (2012), Conference paper in “East meets west on innovation and entrepreneurship 2012”, conference proceedings 327–334, ISBN: 978-9963-700-57-8Google Scholar
  31. 31.
    Väliheikki A, Petallidou KC, Kalamaras CM, Kolli T, Huuhtanen M, Maunula T, Keiski RL, Efstathiou AM (2014) Appl Catal B 156–157:72–83CrossRefGoogle Scholar
  32. 32.
    Baidya T, Bernhard A, Elsener M, Kröcher O (2013) Top Catal 56:23–28CrossRefGoogle Scholar
  33. 33.
    Kolli T, Huuhtanen M, Hallikainen A, Kallinen K, Keiski RL (2009) Catal Lett 127:49–54CrossRefGoogle Scholar
  34. 34.
    Kang M, Duck Park E, Man Kim J, Eui Yie J (2007) Appl Catal A 327:261–269CrossRefGoogle Scholar
  35. 35.
    Gao S, Chen X, Wang H, Mo J, Wu Z, Liu Y, Weng X (2013) J Colloid Interface Sci 394:515–521CrossRefGoogle Scholar
  36. 36.
    Cao F, Xiang J, Su S, Wang P, Sun L, Hu S, Lei S (2014) Chem Eng J 243:347–354CrossRefGoogle Scholar
  37. 37.
    Ardizzone S, Bianchi CL, Grassi E (1998) Colloids Surf A 135:41–51CrossRefGoogle Scholar
  38. 38.
    Xie FY, Gong L, Liu X, Tao YT, Zhang WH, Chen SH, Meng H, Chen J (2012) J Electron Spectrosc Relat Phenom 185:112–118CrossRefGoogle Scholar
  39. 39.
    Xiao T, Wang XY, Zhao ZH, Li L, Zhang L, Yao HC, Wang JS, Li ZJ (2014) Sensor Actuator B 199:210–219CrossRefGoogle Scholar
  40. 40.
    Descostes M, Mercier F, Thromat N, Beaucaire C, Gautier-Soyer M (2000) Appl Surf Sci 165:288–302CrossRefGoogle Scholar
  41. 41.
    de Rivas B, Sampedro C, Garcia-Real M, Lopez-Fonseca R, Gutierrez-Ortiz JI (2013) Appl Catal B 129:225–235CrossRefGoogle Scholar
  42. 42.
    Bu Y, Zhong Q, Xu D, Tan W (2013) J Alloys Compd 578:60–66CrossRefGoogle Scholar
  43. 43.
    Mao W, Ma H, Wang B (2009) J Hazard Mater 167:707–712CrossRefGoogle Scholar
  44. 44.
    Fan G, Shen M, Zhang Z, Jia F (2009) J Rare Earths 27:437–442CrossRefGoogle Scholar
  45. 45.
    Masui T, Hirai H, Hamada R, Imanaka N, Adachi G, Sakata T, Mori H (2003) J Mater Chem 13:622–627CrossRefGoogle Scholar
  46. 46.
    Si Z, Weng D, Wu X, Ran R, Ma Z (2012) Catal Commun 17:146–149CrossRefGoogle Scholar
  47. 47.
    Ji Y, Toops TJ, Pihl JA, Crocker M (2009) Appl Catal B 91:329–338CrossRefGoogle Scholar
  48. 48.
    Wang Y, Shen X, Chen F (2014) J Mol Catal A 381:38–45CrossRefGoogle Scholar
  49. 49.
    Kustov AL, Kustova MY, Fehrmann R, Simonsen P (2005) Appl Catal B 58:97–104CrossRefGoogle Scholar
  50. 50.
    Bazin P, Saur O, Meunier FC, Daturi M, Lavalley JC, Le Govic AM, Harle V, Blanchard G (2009) Appl Catal B 90:368–379CrossRefGoogle Scholar
  51. 51.
    Azambre B, Zenboury L, Weber JV, Burg P (2010) Appl Surf Sci 256:4570–4581CrossRefGoogle Scholar
  52. 52.
    Luo T, Gorte RJ (2004) Appl Catal B 53:77–85CrossRefGoogle Scholar
  53. 53.
    Burcham LJ, Wachs IE (1998) Spectrochim Acta Part A 54:1355–1368CrossRefGoogle Scholar
  54. 54.
    Choo ST, Yim SD, Nam IS, Ham SW, Lee JB (2003) Appl Catal B 44:237–252CrossRefGoogle Scholar
  55. 55.
    Kröcher O, Elsener M (2008) Ind Eng Chem 47:8588–8593CrossRefGoogle Scholar
  56. 56.
    Väliheikki A, Kolli T, Huuhtanen M, Maunula T, Kinnunen T, Keiski RL (2013) Top Catal 56:602–610CrossRefGoogle Scholar
  57. 57.
    Busca G, Lietti L, Ramis G, Berti F (1998) Appl Catal B 18:1–36CrossRefGoogle Scholar
  58. 58.
    Notoya F, Su C, Sasaoka E (2001) Ind Eng Chem Res 40:3732–3739CrossRefGoogle Scholar
  59. 59.
    Zhao W, Zhong Q, Pan Y, Zhang R (2013) Chem Eng J 228:815–823CrossRefGoogle Scholar
  60. 60.
    Xu W, He H, Yu Y (2009) J Phys Chem C 113:4426–4432CrossRefGoogle Scholar
  61. 61.
    Si Z, Weng D, Wu X, Yang J (2010) J Rare Earths 28:727–731CrossRefGoogle Scholar
  62. 62.
    Xu H, Zhang Q, Qiu C, Lin T, Gong M, Chen Y (2012) Chem Eng Sci 76:120–128CrossRefGoogle Scholar
  63. 63.
    Ham SW, Nam IS (2002) In: Spivey JJ (ed) Catalysis, vol 16. Royal Society of Chemistry, CambridgeCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ari Väliheikki
    • 1
    Email author
  • Tanja Kolli
    • 1
  • Mika Huuhtanen
    • 1
  • Teuvo Maunula
    • 2
  • Riitta L. Keiski
    • 1
  1. 1.Environmental and Chemical Engineering, Faculty of TechnologyUniversity of OuluOuluFinland
  2. 2.Dinex Ecocat OyOuluFinland

Personalised recommendations