Skip to main content
Log in

Impact of the Desilication Treatment of Y Zeolite on the Catalytic Cracking of Bulky Hydrocarbon Molecules

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Mesoporosity was induced on a USY zeolite by means of an alkaline leaching process. Samples were immersed in 0.05, 0.10 and 0.20 M NaOH solutions during 15 min at room temperature and then were exchanged with NH4 + ions and calcined to yield the acid forms. The formation of mesopores with size ranging from 20 to 100 Å increased with the concentration of NaOH. The modified zeolites were used at 30 wt% to formulate cracking catalysts with an inert SiO2 matrix. The catalytic performance of these catalysts in the conversion of 1,3,5-tri-isopropylbenzene was evaluated in a batch, fluidized bed reactor at 450, 500 and 530 °C, with a catalyst to oil relationship of 4.7 and contact times up to 16 s. The catalysts with the modified zeolites were more active in the cracking of these bulky molecules than the one with the parent, unmodified zeolite; moreover, the selectivity to the products of primary cracking reactions increased. These results reveal an enhanced diffusion of the reactant molecules to the zeolite active sites and of the products out of the catalyst particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O’Connor P (2007) Catalytic cracking: the future of an evolving process. Stud Surf Sci Catal 166:227–251

    Article  Google Scholar 

  2. Harding R, Peters A, Nee J (2001) New developments in FCC catalyst technology. Appl Catal A 221:389–396

    Article  CAS  Google Scholar 

  3. Letzsch W, Ashton A (1993) The effect of feedstock on yields and product quality. Stud Surf Sci Catal 76:441–498

    Article  CAS  Google Scholar 

  4. Al-Khattaf S, de Lasa H (2002) The role of diffusion in alkyl-benzenes catalytic cracking. Appl Catal A 226:139–153

    Article  CAS  Google Scholar 

  5. Al-Khattaf S, Atias J, Jarosch K, de Lasa H (2002) Diff-usion and catalytic cracking of 1,3,5 tri-iso-propyl-benzene in FCC catalysts. Chem Eng Sci 57:4909–4920

    Article  CAS  Google Scholar 

  6. Martinez C, Verboekend D, Pérez-Ramírez J, Corma A (2012) Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking. Catal Sci Technol 3:972–981

    Article  Google Scholar 

  7. Falabella Souza-Aguiar E, Murta Valle M, Silva M, Silva D (1995) Influence of external surface area of rare-earth containing Y-zeolites on the cracking of 1,3,5-triisopropylbenzene. Zeolites 15:620–623

    Article  Google Scholar 

  8. Na K, Choi M, Ryoo R (2013) Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous Mesoporous Mater 166:3–19

    Article  CAS  Google Scholar 

  9. Corma A, Diaz-Cabañas M, Jordá J, Martínez C, Moliner M (2006) High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature 443:842–845

    Article  CAS  Google Scholar 

  10. Tonetto G, Atias J, de Lasa H (2004) FCC catalysts with different zeolite crystallite sizes: acidity, structural properties and reactivity. Appl Catal A 270:9–25

    Article  CAS  Google Scholar 

  11. Gayubo A, Alonso A, Valle B, Aguayo A, Bilbao J (2010) Selective production of olefins from bioethanol on HZSM-5 zeolite catalysts treated with NaOH. Appl Catal B 97:299–306

    Article  CAS  Google Scholar 

  12. Janssen A, Koster A, de Jong K (2002) On the shape of the mesopores in zeolite Y: a three-dimensional transmission electron microscopy study combined with texture analysis. J Phys Chem B 1067:11905–11909

    Article  Google Scholar 

  13. de Jong K, Zečević J, Friedrich H, de Jongh P, Bulut M, van Donk S, Kenmogne R, Finiels A, Hulea V, Fajula F (2010) Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angew Chem Int Ed 49:10074–10078

    Article  Google Scholar 

  14. Groen J, Moulijn J, Pérez-Ramírez J (2007) Alkaline posttreatment of MFI zeolites. From accelerated screening to scale-up. Ind Eng Chem Res 46:4193–4201

    Article  CAS  Google Scholar 

  15. Verboekend D, Vilé G, Pérez-Ramírez J (2012) Mesopore formation in USY and beta zeolites by base leaching: selection criteria and optimization of pore-directing agents. Cryst Growth Des 12:3123–3132

    Article  CAS  Google Scholar 

  16. Verboekend D, Keller T, Mitchell S, Pérez-Ramírez J (2013) Hierarchical FAU- and LTA-type zeolites by post-synthetic design: a new generation of highly efficient base catalysts. Adv Funct Mater 23:1923–1934

    Article  CAS  Google Scholar 

  17. García JR, Bertero M, Falco M, Sedran U (2015) Catalytic cracking of bio-oils improved by the formation of mesopores by means of Y zeolite desilication. Appl Catal A 503:1–8

    Article  Google Scholar 

  18. Hartmann M (2004) Hierarchical zeolites: a proven strategy to combine shape selectivity with efficient mass transport. Angew Chem Int Ed 43:5880–5882

    Article  CAS  Google Scholar 

  19. Groen J, Zhu W, Brouwer S, Huynink S, Kapteijn R, Moulijn J, Pérez-Ramírez J (2007) Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. J Am Chem Soc 129:355–360

    Article  CAS  Google Scholar 

  20. Jiménez-García G, Aguilar-López R, Maya-Yescas R (2011) The fluidized-bed catalytic cracking unit building its future environment. Fuel 90:3531–3541

    Article  Google Scholar 

  21. Tukur N, Al-Khattaf S (2005) Catalytic cracking of n-dodecane and alkyl benzenes over FCC zeolite catalysts: time on stream and reactant converted models. Chem Eng Process 44:1257–1268

    Article  CAS  Google Scholar 

  22. Bazyari A, Khodadadi A, Hosseinpour N, Mortazavi Y (2009) Effects of steaming-made changes in physicochemical properties of Y-zeolite on cracking of bulky 1,3,5-triisopropylbenzene and coke formation. Fuel Process Technol 90:1226–1233

    Article  CAS  Google Scholar 

  23. Falco M, Morgado E, Amadeo N, Sedran U (2006) Accessibility in alumina matrices of FCC catalysts. Appl Catal A 315:29–34

    Article  CAS  Google Scholar 

  24. Morales-Pacheco P, Domínguez J, Bucio L, Alvarez F, Sedran U, Falco M (2011) Synthesis of FAU(Y)- and MFI(ZSM5)-nanosized crystallites for catalytic cracking of 1,3,5-triisopropylbenzene. Catal Today 166:25–38

    Article  CAS  Google Scholar 

  25. Aghakhani M, Khodadadi A, Najafi Sh, Mortazavi Y (2014) Enhanced triisopropylbenzene cracking and suppressed coking on tailored composite of Y-zeolite/amorphous silica–alumina catalyst. J Ind Eng Chem 20:3037–3045

    Article  CAS  Google Scholar 

  26. Tauster S, Ho T, Fung S (1987) Assessment of diffusional inhibition via primary and secondary cracking analysis. J Catal 106:105–110

    Article  CAS  Google Scholar 

  27. Emeis C (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141:347–354

    Article  CAS  Google Scholar 

  28. Renzini MS, Sedran U, Pierella L (2009) H-ZSM-11 and Zn-ZSM-11 zeolites and their applications in the catalytic transformation of LDPE. J Anal Appl Pyrolysis 86:215–220

    Article  CAS  Google Scholar 

  29. de Lasa H (1992) Novel Riser simulator reactor. US Patent 5.102.628

  30. de la Puente G, Sedran U (2004) Formation of gum precursors in FCC naphthas. Energy Fuels 18:460–464

    Article  Google Scholar 

  31. de la Puente G, Ávila A, Chiovetta G, Martignoni W, Cerqueira H, Sedran U (2005) Adsorption of hydrocarbons on FCC catalysts under reaction conditions. Ind Eng Chem Res 44:3879–3886

    Article  Google Scholar 

  32. Sullivan R, Egan C, Langlois G (1964) Hydrocracking of alkylbenzenes and polycyclic aromatic hydrocarbons on acidic catalysts. Evidence for cyclization of the side chains. J Catal 3:183–195

    Article  CAS  Google Scholar 

  33. Gilbert W, Morgado E, de Abreu M, de la Puente G, Passamonti F, Sedran U (2011) A novel fluid catalytic cracking approach for producing low aromatic LCO. Fuel Process Technol 92:2235–2240

    Article  CAS  Google Scholar 

  34. Wojciechowski B, Corma A (1986) Catalytic cracking. Catalysts, chemistry, and kinetics. Marcel Dekker, New York

    Google Scholar 

  35. Weisz P, Swegler E (1955) Effect of intra-particle diffusion on the kinetics of catalytic dehydrogenation of cyclohexane. J Phys Chem 59:823–826

    Article  CAS  Google Scholar 

  36. Kärger J, Ruthven D (1992) Diffusion in zeolites and other microporous solids. Wiley, New York

    Google Scholar 

  37. Froment G, Bischoff K, De Wilde J (2011) Chemical reactor analysis and design. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

This work was performed with the financial assistance of University of Litoral (Santa Fe, Argentina), Secretary of Science and Technology, Proj. CAID 2011 #501-201101-00546LI; The National Scientific and Technological Research Council, PIP 1257/09 and the National Agency for Scientific and Technological Promotion, PICT 2010/2123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulises Sedran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, J.R., Falco, M. & Sedran, U. Impact of the Desilication Treatment of Y Zeolite on the Catalytic Cracking of Bulky Hydrocarbon Molecules. Top Catal 59, 268–277 (2016). https://doi.org/10.1007/s11244-015-0432-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0432-7

Keywords

Navigation