Skip to main content

Highly Selective Cu-Modified Ni/SiO2–Al2O3 Catalysts for the Conversion of Maleic Anhydride to γ-Butyrolactone in Gas Phase

Abstract

The gas phase hydrogenation of maleic anhydride (MA) to succinic anhydride (SA) and the subsequent hydrogenolysis to γ-butyrolactone (GBL) was studied on SiO2–Al2O3-supported Ni catalysts modified with Cu and prepared by incipient wetness impregnation (Ni-I, CuNi-I) and coprecipitation-deposition (CuNi-PD) methods. The samples were characterized by N2 adsorption at −196 °C, X-ray diffraction, temperature-programmed reduction, transmission electron microscopy and H2 chemisorption. Catalytic tests were performed between 170 and 220 °C at atmospheric pressure in a fixed bed reactor. Crystalline NiO along with a Ni2+ phase strongly interacting with the support was observed in the oxide precursors. The extent of the strongly interacting Ni2+ phase diminishes according to the following pattern: CuNi-PD > CuNi-I > Ni-I, along with a proportional rise of the NiO phase. The proportion of small to large metal particles, formed after reduction, followed the same pattern as that observed for the extent of Ni2+ phase. All catalysts were very active in the MA hydrogenation to SA, but displayed distinct performances with respect to the subsequent SA hydrogenolysis. Hydrogenolytic activity and GBL yield increased following the same pattern as that obtained for the extent of Ni2+ phase. In addition, the effect of raising temperature on hydrogenolytic activity was more important in the case of Ni-I and CuNi-I than for CuNi-PD. Furthermore, CuNi-PD was more selective to GBL than CuNi-I. These results showed that there is an important effect of Cu addition and preparation method on both the structure and catalytic performance of the metal Ni phase.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

References

  1. Zhang B, Zhu Y, Ding G, Zheng H, Li Y (2012) Appl Catal A Gen 44:191–201

    Article  CAS  Google Scholar 

  2. Yu Y, Guo Y, Zhan W, Guo Y, Wang Y, Wang Y, Zhang Z, Lu G (2011) J Mol Catal A Chem 337:77–81

    Article  CAS  Google Scholar 

  3. Budroni G, Corma A (2008) J Catal 257:403–408

    Article  CAS  Google Scholar 

  4. Messori M, Vaccari A (1994) J Catal 150:177–185

    Article  CAS  Google Scholar 

  5. Zhang R, Yin H, Zhang D, Qi L, Lu H, Shen Y, Jiang T (2008) Chem Eng J 140:488–496

    Article  CAS  Google Scholar 

  6. Gao D, Feng Y, Yin H, Wang A, Jiang T (2013) Chem Eng J 233:349–359

    Article  CAS  Google Scholar 

  7. Castiglioni GL, Vaccari A, Fierro G, Inversi M, Lo Jacono M, Minelli G, Pettiti I, Porta P, Gazzano M (1995) Appl Catal A Gen 123:132–144

    Article  Google Scholar 

  8. Zhu YL, Yang J, Dong GQ, Zheng HY, Zhang HH, Xiang HW, Li YW (2005) Appl Catal B Environ 57:183–190

    Article  CAS  Google Scholar 

  9. Yu Y, Guo Y, Zhan W, Guo Y, Wang Y, Lu G (2014) J. Mol Catal A Chem 392:1–7

    Article  CAS  Google Scholar 

  10. Regenhardt SA, Trasarti AF, Meyer CI, Garetto TF, Marchi AJ (2013) Catal Commun 35:59–63

    Article  CAS  Google Scholar 

  11. Vaidya SH, Rode CV, Chaudhari RV (2007) Catal Commun 8:340–344

    Article  CAS  Google Scholar 

  12. Jung SM, Godard E, Jung SY, Park KC, Choi JU (2003) J Mol Catal A Chem 198:297–302

    Article  CAS  Google Scholar 

  13. Lu W, Lu G, Guo Y, Guo Y, Wang Y (2003) Catal Commun 4:177–181

    Article  CAS  Google Scholar 

  14. Ohlinger C, Kraushaar-Czarnetzki B (2003) Chem Eng Sci 58:1453–1461

    Article  CAS  Google Scholar 

  15. Marchi AJ, Fierro JLG, Santamaria J, Monzon A (1996) Appl Catal A Gen 142:375–386

    Article  CAS  Google Scholar 

  16. Meyer CI, Marchi AJ, Monzon A, Garetto TF (2009) Appl Catal A Gen 367:122–129

    Article  CAS  Google Scholar 

  17. Meyer CI, Regenhardt SA, Marchi AJ, Garetto TF (2012) Appl Catal A Gen 417–418:59–65

    Article  Google Scholar 

  18. Regenhardt SA, Meyer CI, Garetto TF, Marchi AJ (2012) Appl Catal A Gen 449:81–87

    Article  CAS  Google Scholar 

  19. Meyer CI, Regenhardt SA, Bertone ME, Marchi AJ, Garetto TF (2013) Catal Lett 143:1067–1073

    Article  CAS  Google Scholar 

  20. Geus JW, van Dillen AJ (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, VCH, Weinheim

  21. Montes M, Penneman de Bosscheyde C, Hodnett BK, Delannay F, Grange P, Delmon B (1984) Appl Catal 12:309–330

    Article  CAS  Google Scholar 

  22. Gil A, Díaz A, Gandía LM, Montes M (1994) Appl Catal A Gen 109:167–179

    Article  CAS  Google Scholar 

  23. Habimana F, Li X, Ji S, Lang B, Sun D, Li C (2009) J Nat Gas Chem 18:392–398

    Article  CAS  Google Scholar 

  24. Li J, Tian WP, Wang X, Shi L (2011) Chem Eng J 175:417–422

    Article  CAS  Google Scholar 

  25. Guo S, Shi L (2013) Catal Today 212:137–141

    Article  CAS  Google Scholar 

  26. Huo W, Zhang C, Yuan H, Jia M, Ning C, Tang Y, Zhang Y, Luo J, Wang Z, Zhang W (2014) J Ind Eng Chem 20:4140–4145

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) from Argentina for the financial support of this work. We also acknowledge to LMA-INA-UNIZAR facilities for the transmission electronic microscopy analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Marchi.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertone, M.E., Regenhardt, S.A., Meyer, C.I. et al. Highly Selective Cu-Modified Ni/SiO2–Al2O3 Catalysts for the Conversion of Maleic Anhydride to γ-Butyrolactone in Gas Phase. Top Catal 59, 159–167 (2016). https://doi.org/10.1007/s11244-015-0424-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0424-7

Keywords