Skip to main content
Log in

Nucleation, Growth, and Robust Synthesis of SPP Zeolite: Effect of Ethanol, Sodium, and Potassium

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Self-pillared pentasil (SPP) zeolite is a hierarchically-structured zeolite comprised of single-unit cell thick MFI nanosheets arranged in a “house of cards” structure. The nucleation and growth of SPP proceeds through three phases involving the evolution of precursor amorphous nanoparticles to MFI nanosheets and then rotational intergrowth of sheets to produce the SPP morphology. This paper expands upon an earlier report to extend understanding of nucleation and growth events throughout the entire preparation process, from hydrolysis of the silica source to high conversion to crystals. Common aspects with the extensively investigated clear-sol silicalite-1 system are identified. Evaporation of co-solvent ethanol was found to accelerate the crystallization significantly. Furthermore, robust synthesis of SPP with high density of well-developed single-unit cell domains has been achieved with addition of potassium and sodium to the synthesis sols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Burkett SL, Davis ME (1994) Mechanism of structure direction in the synthesis of Si-ZSM-5: an investigation by intermolecular 1H–29Si CP MAS NMR. J Phys Chem 98:4647–4653

    Article  CAS  Google Scholar 

  2. Burkett SL, Davis ME (1995) Mechanism of structure direction in the synthesis of pure-silica zeolites. 2. Hydrophobic hydration and structural specificity. Chem Mater 7:1453–1463

    Article  CAS  Google Scholar 

  3. Burkett SL, Davis ME (1995) Mechanisms of structure direction in the synthesis of pure-silica zeolites. 1. Synthesis of TPA/Si-ZSM-5. Chem Mater 7:920–928

    Article  CAS  Google Scholar 

  4. Tsapatsis M, Lovallo M, Okubo T et al (1995) Characterization of zeolite L nanoclusters. Chem Mater 7:1734–1741. doi:10.1021/cm00057a025

    Article  CAS  Google Scholar 

  5. Tsapatsis M, Lovallo M, Davis ME (1996) High-resolution electron microscopy study on the growth of zeolite L nanoclusters. Microporous Mater 5:381–388. doi:10.1016/0927-6513(95)00069-0

    Article  CAS  Google Scholar 

  6. Beck LW, Davis ME (1998) Alkylammonium polycations as structure-directing agents in MFI zeolite synthesis. Microporous Mesoporous Mater 22:107–114. doi:10.1016/S1387-1811(98)00096-1

    Article  CAS  Google Scholar 

  7. Tsapatsis M (2014) 2-Dimensional zeolites. AIChE J 60:2374–2381. doi:10.1002/aic

    Article  CAS  Google Scholar 

  8. Pérez-Ramírez J, Christensen CH, Egeblad K et al (2008) Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev 37:2530–2542. doi:10.1039/b809030k

    Article  Google Scholar 

  9. Davis ME (1991) Zeolites and molecular sieves: not just ordinary catalysts. Ind Eng Chem Res 30:1675–1683

    Article  CAS  Google Scholar 

  10. Davis ME, Lobo RF (1992) Zeolite and molecular sieve synthesis. Chem Mater 4:756–768

    Article  CAS  Google Scholar 

  11. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821

    Article  CAS  Google Scholar 

  12. Serrano DP, Escola JM, Pizarro P (2013) Synthesis strategies in the search for hierarchical zeolites. Chem Soc Rev 42:4004–4035. doi:10.1039/c2cs35330j

    Article  CAS  Google Scholar 

  13. Zečević J, de Jong KP (2013) Architecture at the nanoscale-self-pillared zeolite nanosheets. ChemCatChem 5:417–418. doi:10.1002/cctc.201200596

    Article  Google Scholar 

  14. Möller K, Bein T (2013) Mesoporosity—a new dimension for zeolites. Chem Soc Rev 42:3689–3707. doi:10.1039/c3cs35488a

    Article  Google Scholar 

  15. Bai P, Olson DH, Tsapatsis M, Siepmann JI (2014) Understanding the unusual adsorption behavior in hierarchical zeolite nanosheets. ChemPhysChem 15:2225–2229. doi:10.1002/cphc.201402189

    Article  CAS  Google Scholar 

  16. Chang C, Teixeira A, Li C et al (2013) Enhanced molecular transport in hierarchical silicalite-1. Langmuir 29:13943–13950

    Article  CAS  Google Scholar 

  17. Wang J, Yue W, Zhou W, Coppens M-O (2009) TUD-C: a tunable, hierarchically structured mesoporous zeolite composite. Microporous Mesoporous Mater 120:19–28. doi:10.1016/j.micromeso.2008.08.060

    Article  CAS  Google Scholar 

  18. Choi M, Na K, Kim J et al (2009) SI: stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461:246–249. doi:10.1038/nature08288

    Article  CAS  Google Scholar 

  19. Fan W, Snyder MA, Kumar S et al (2008) Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nat Mater 7:984–991. doi:10.1038/nmat2302

    Article  CAS  Google Scholar 

  20. Lee P-S, Zhang X, Stoeger JA et al (2011) Sub-40 nm zeolite suspensions via disassembly of three-dimensionally ordered mesoporous-imprinted silicalite-1. J Am Chem Soc 133:493–502

    Article  CAS  Google Scholar 

  21. Chen H, Wydra J, Zhang X et al (2011) Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. J Am Chem Soc 133:12390–12393. doi:10.1021/ja2046815

    Article  CAS  Google Scholar 

  22. Na K, Choi M, Park W et al (2010) Pillared MFI zeolite nanosheets of a single-unit-cell thickness. J Am Chem Soc 132:4169–4177. doi:10.1021/ja908382n

    Article  CAS  Google Scholar 

  23. Groen JC, Zhu W, Brouwer S et al (2007) Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. J Am Chem Soc 129:355–360. doi:10.1021/ja065737o

    Article  CAS  Google Scholar 

  24. Groen JC, Moulijn JA, Pérez-Ramírez J (2006) Desilication: on the controlled generation of mesoporosity in MFI zeolites. J Mater Chem 16:2121. doi:10.1039/b517510k

    Article  CAS  Google Scholar 

  25. Müller M, Harvey G, Prins R (2000) Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4. Microporous Mesoporous Mater 34:135–147

    Article  Google Scholar 

  26. Van Donk S, Janssen AH, Bitter JH, de Jong KP (2003) Generation, characterization, and impact of mesopores in zeolite catalysts. Catal Rev 45:297–319. doi:10.1081/CR-120023908

    Article  Google Scholar 

  27. Zhang X, Liu D, Xu D et al (2012) Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 336:1684–1687. doi:10.1126/science.1221111

    Article  CAS  Google Scholar 

  28. Chaikittisilp W, Suzuki Y, Mukti RR et al (2013) Formation of hierarchically organized zeolites by sequential intergrowth. Angew Chem 125:3439–3443. doi:10.1002/ange.201209638

    Article  Google Scholar 

  29. Inayat A, Knoke I, Spiecker E, Schwieger W (2012) Assemblies of mesoporous FAU-type zeolite nanosheets. Angew Chem Int Ed Engl 51:1962–1965. doi:10.1002/anie.201105738

    Article  CAS  Google Scholar 

  30. Khaleel M, Wagner AJ, Mkhoyan KA, Tsapatsis M (2014) On the rotational intergrowth of hierarchical FAU/EMT zeolites. Angew Chem Int Ed. doi:10.1002/anie.201402024

    Google Scholar 

  31. Jeong H-K, Krohn J, Sujaoti K, Tsapatsis M (2002) Oriented molecular sieve membranes by heteroepitaxial growth. J Am Chem Soc 124:12966–12968

    Article  CAS  Google Scholar 

  32. Okubo T, Wakihara T, Plévert J et al (2001) Heteroepitaxial growth of a zeolite. Angew Chem Int Ed 40:1069–1071

    Article  CAS  Google Scholar 

  33. Millward G, Ramdas S, Thomas J (1985) On the direct imaging of offretite, cancrinite, chabazite and other related ABC-6 zeolites and their intergrowths. Proc R Soc Lond A Math Phys Eng. Sci 399:57–71

    Article  CAS  Google Scholar 

  34. Xu D, Swindlehurst GR, Wu H et al (2014) On the synthesis and adsorption properties of single-unit-cell hierarchical zeolites made by rotational intergrowths. Adv Funct Mater 24:201–208. doi:10.1002/adfm.201301975

    Article  CAS  Google Scholar 

  35. Bergmann A, Fritz G, Glatter O (2000) Solving the generalized indirect Fourier transformation (GIFT) by Boltzmann simplex simulated annealing (BSSA). J Appl Crystallogr 33:1212–1216. doi:10.1107/S0021889800008372

    Article  CAS  Google Scholar 

  36. Behr MJ, Mkhoyan KA, Aydil ES (2010) Orientation and morphological evolution of catalyst nanoparticles during carbon nanotube growth. ACS Nano 4:5087–5094. doi:10.1021/nn100944n

    Article  CAS  Google Scholar 

  37. Ravikovitch PI, Neimark AV (2001) Characterization of nanoporous materials from adsorption and desorption isotherms. Colloids Surf A Physicochem Eng Asp 187–188:11–21

    Article  Google Scholar 

  38. Rimer JD, Vlachos DG, Lobo RF (2005) Evolution of self-assembled silica- tetrapropylammonium nanoparticles at elevated temperatures. J Phys Chem B 109:12762–12771

    Article  CAS  Google Scholar 

  39. Davis TM, Drews TO, Ramanan H et al (2006) Mechanistic principles of nanoparticle evolution to zeolite crystals. Nat Mater 5:400–408. doi:10.1038/nmat1636

    Article  CAS  Google Scholar 

  40. Kumar S, Wang Z, Penn RL, Tsapatsis M (2008) A structural resolution cryo-TEM study of the early stages of MFI growth. J Am Chem Soc 130:17284–17286. doi:10.1021/ja8063167

    Article  CAS  Google Scholar 

  41. Aerts A, Haouas M, Caremans T et al (2010) Investigation of the mechanism of colloidal silicalite-1 crystallization by using DLS, SAXS, and 29Si NMR spectroscopy. Chemistry 16:2764–2774. doi:10.1002/chem.200901688

    Article  CAS  Google Scholar 

  42. Rimer JD, Fedeyko JM, Vlachos DG, Lobo RF (2006) Silica self-assembly and synthesis of microporous and mesoporous silicates. Chemistry 12:2926–2934. doi:10.1002/chem.200500684

    Article  CAS  Google Scholar 

  43. Porod G (1982) General Theory. In: Glatter O, Kratky O (eds) Small-angle X-ray scatt, 1st edn. Academic Press, London, pp 17–51

    Google Scholar 

  44. Weyerich B, Brunner-Popela J, Glatter O (1999) Small-angle scattering of interacting particles. II. Generalized indirect Fourier transformation under consideration of the effective structure factor for polydisperse systems. J Appl Crystallogr 32:197–209. doi:10.1107/S0021889898011790

    Article  CAS  Google Scholar 

  45. Mintova S, Olson NH, Senker J, Bein T (2002) Mechanism of the transformation of silica precursor solutions into Si-MFI zeolite. Angew Chem Int Ed Engl 41:2558–61

  46. Petry DP, Haouas M, Wong SCC et al (2009) Connectivity analysis of the clear sol precursor of silicalite: are nanoparticles aggregated oligomers or silica particles? J Phys Chem C 113:20827–20836. doi:10.1021/jp906276g

    Article  CAS  Google Scholar 

  47. Kumar S, Davis TM, Ramanan H et al (2007) Aggregative growth of silicalite-1. J Phys Chem B 111:3398–3403. doi:10.1021/jp0677445

    Article  CAS  Google Scholar 

  48. Tokay B, Erdem-Şenatalar A (2012) Variation of particle size and its distribution during the synthesis of silicalite-1 nanocrystals. Microporous Mesoporous Mater 148:43–52. doi:10.1016/j.micromeso.2011.07.011

    Article  CAS  Google Scholar 

  49. Cundy C, Lowe B, Sinclair D (1993) Crystallisation of zeolitic molecular sieves: direct measurements of the growth behaviour of single crystals as a function of synthesis conditions. Faraday Discuss 95:235–252

    Article  CAS  Google Scholar 

  50. Persson A, Schoeman B, Sterte J, Otterstedt J (1994) The synthesis of discrete colloidal particles of TPA-silicalite-1. Zeolites 14:557–567

    Article  CAS  Google Scholar 

  51. Cheng C-H, Shantz DF (2005) Silicalite-1 growth from clear solution: effect of alcohol identity and content on growth kinetics. J Phys Chem B 109:19116–19125. doi:10.1021/jp0524633

    Article  CAS  Google Scholar 

  52. Huang Y, Yao J, Zhang X et al (2011) Role of ethanol in sodalite crystallization in an ethanol–Na2O–Al2O3–SiO2–H2O system. CrystEngComm 13:4714. doi:10.1039/c1ce05194f

    Article  CAS  Google Scholar 

  53. Wang H, Wang Z, Huang L et al (2001) Surface patterned porous films by convection-assisted dynamic self-assembly of zeolite nanoparticles. Langmuir 17:2572–2574

    Article  CAS  Google Scholar 

  54. Terasaki O, Ohsuna T, Sakuma H et al (1996) Direct observation of “pure MEL type” zeolite. Chem Mater 8:463–468

    Article  CAS  Google Scholar 

  55. Jablonski G, Sand L, Gard J (1986) Synthesis and identification of ZSM-5/ZSM-11 pentasil intergrowth structures. Zeolites 6:396–402

    Article  CAS  Google Scholar 

  56. Piccione PM, Davis ME (2001) A new structure-directing agent for the synthesis of pure-phase ZSM-11. Microporous Mesoporous Mater 49:163–169. doi:10.1016/S1387-1811(01)00414-0

    Article  CAS  Google Scholar 

  57. Millward G, Ramdas S, Thomas J (1983) Evidence for semi-regularly ordered sequences of mirror and inversion symmetry planes in ZSM-5/ZSM-11 shape-selective zeolitic catalysts. J Chem Soc Faraday Trans 2(79):1075–1082

    Article  Google Scholar 

Download references

Acknowledgments

This article was based on work supported as part of the Catalysis Center for Energy Innovation (CCEI), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001004. Partial support was provided by the Petroleum Institute, Abu Dhabi, UAE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Tsapatsis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6308 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swindlehurst, G.R., Kumar, P., Xu, D. et al. Nucleation, Growth, and Robust Synthesis of SPP Zeolite: Effect of Ethanol, Sodium, and Potassium. Top Catal 58, 545–558 (2015). https://doi.org/10.1007/s11244-015-0396-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0396-7

Keywords

Navigation